mirror of https://github.com/hpcaitech/ColossalAI
114 lines
4.2 KiB
Python
114 lines
4.2 KiB
Python
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from einops import rearrange
|
|
|
|
from ..scaled_softmax import AttnMaskType
|
|
from .flash_attn_2 import HAS_FLASH_ATTN
|
|
from .mem_eff_attn import HAS_MEM_EFF_ATTN
|
|
from .utils import Repad, SeqLenInfo, Unpad
|
|
|
|
if HAS_FLASH_ATTN:
|
|
from .flash_attn_2 import flash_attention
|
|
if HAS_MEM_EFF_ATTN:
|
|
from .mem_eff_attn import mem_eff_attention
|
|
|
|
|
|
class ColoAttention(torch.nn.Module):
|
|
def __init__(self, embed_dim: int, num_heads: int, dropout: float = 0.0, scale=None):
|
|
super().__init__()
|
|
assert (
|
|
embed_dim % num_heads == 0
|
|
), f"the embed dim ({embed_dim}) is not divisible by the number of attention heads ({num_heads})."
|
|
if scale is not None:
|
|
self.scale = scale
|
|
else:
|
|
self.scale = 1 / math.sqrt(embed_dim // num_heads)
|
|
self.dropout = dropout
|
|
|
|
if not HAS_MEM_EFF_ATTN and not HAS_FLASH_ATTN:
|
|
raise Exception("flash attention can not support!")
|
|
|
|
@staticmethod
|
|
def unpad(tensor: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
|
|
return Unpad.apply(tensor, indices)
|
|
|
|
@staticmethod
|
|
def repad(tensor: torch.Tensor, indices: torch.Tensor, batch_size: int, seq_len: int) -> torch.Tensor:
|
|
return Repad.apply(tensor, indices, batch_size, seq_len)
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
attn_mask_type: Optional[AttnMaskType] = None,
|
|
bias: Optional[torch.Tensor] = None,
|
|
):
|
|
attn = None
|
|
if HAS_FLASH_ATTN and query.dtype in [torch.float16, torch.bfloat16] and bias == None:
|
|
attn = flash_attention
|
|
else:
|
|
attn = mem_eff_attention
|
|
|
|
padded = attn_mask_type is not None and attn_mask_type.value % 2 == 1
|
|
causal = attn_mask_type is not None and attn_mask_type.value > 1
|
|
|
|
batch_size, tgt_len, src_len = query.shape[0], query.shape[1], key.shape[1]
|
|
# unpad
|
|
seq_len_info_q = None
|
|
seq_len_info_kv = None
|
|
if padded:
|
|
# bert style, unpad process
|
|
assert (
|
|
attn_mask is not None
|
|
), f"attention mask {attn_mask} is not valid for attention mask type {attn_mask_type}."
|
|
assert attn_mask.dim() == 2, (
|
|
"attention mask is supposed to have shape (batch_size, seq_len), "
|
|
+ f"but got {attn_mask.dim()} dimensions."
|
|
)
|
|
|
|
# bert style
|
|
if tgt_len == src_len:
|
|
seq_len_info_q = SeqLenInfo.materialize(attn_mask=attn_mask, device=query.device)
|
|
if batch_size > 1:
|
|
query, key, value = self.unpad(
|
|
torch.stack([query, key, value], dim=2), seq_len_info_q.indices
|
|
).unbind(dim=1)
|
|
else:
|
|
query, key, value = torch.stack([query, key, value], dim=2).squeeze(0).unbind(dim=1)
|
|
seq_len_info_kv = seq_len_info_q
|
|
else:
|
|
seq_len_info_q = SeqLenInfo.materialize(size=(batch_size, tgt_len), device=query.device)
|
|
seq_len_info_kv = SeqLenInfo.materialize(attn_mask=attn_mask, device=query.device)
|
|
if batch_size > 1:
|
|
query = rearrange(query, "b s ... -> c (b s) ...", c=1)
|
|
key, value = self.unpad(torch.stack([query, key, value], dim=2), seq_len_info_kv.indices).unbind(
|
|
dim=1
|
|
)
|
|
else:
|
|
query, key, value = torch.stack([query, key, value], dim=2).squeeze(0).unbind(dim=1)
|
|
|
|
out = attn(
|
|
query,
|
|
key,
|
|
value,
|
|
seq_len_info_q,
|
|
seq_len_info_kv,
|
|
dropout_p=self.dropout,
|
|
scale=self.scale,
|
|
causal=causal,
|
|
padded=padded,
|
|
)
|
|
|
|
# repad
|
|
if padded:
|
|
if batch_size > 1:
|
|
out = self.repad(out, seq_len_info_q.indices, batch_size, tgt_len)
|
|
out = rearrange(out, "(b s) h d -> b s h d", b=batch_size)
|
|
|
|
out = rearrange(out, "b s h d -> b s (h d)")
|
|
return out
|