ColossalAI/colossalai/inference/tensor_parallel/engine.py

381 lines
17 KiB
Python

from typing import Any, Callable, List, Optional, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from transformers import BloomForCausalLM, LlamaForCausalLM
from transformers.generation import GenerationConfig
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers.tokenization_utils_base import BatchEncoding
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.shardformer.policies.auto_policy import get_autopolicy
from .batch_infer_state import BatchInferState
from .kvcache_manager import MemoryManager
DP_AXIS, PP_AXIS, TP_AXIS = 0, 1, 2
_supported_models = [
"LlamaForCausalLM",
"LlamaModel",
"BloomForCausalLM",
"ChatGLMModel",
"ChatGLMForConditionalGeneration",
]
class TPInferEngine:
"""Engine class for tensor parallel inference.
Args:
model (Module): original model, e.g. huggingface CausalLM
shard_config (ShardConfig): The config for sharding original model
max_batch_size (int): maximum batch size
max_input_len (int): maximum input length of sequence
max_output_len (int): maximum output length of output tokens
dtype (torch.dtype): datatype used to init KV cache space
device (str): device the KV cache of engine to be initialized on
Examples:
>>> # define model and shard config for your inference
>>> model = ...
>>> generate_kwargs = ...
>>> shard_config = ShardConfig(enable_tensor_parallelism=True, inference_only=True)
>>> infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
>>> outputs = infer_engine.generate(input_ids, **generate_kwargs)
"""
def __init__(
self,
model: nn.Module,
shard_config: ShardConfig,
max_batch_size: int,
max_input_len: int,
max_output_len: int,
dtype: torch.dtype = torch.float16,
device: str = "cuda",
) -> None:
self.max_batch_size = max_batch_size
self.max_input_len = max_input_len
self.max_output_len = max_output_len
self.max_total_token_num = self.max_batch_size * (self.max_input_len + self.max_output_len)
# Constraints relatable with specs of devices and model
# This may change into an optional arg in the future
assert self.max_batch_size <= 64, "Max batch size exceeds the constraint"
assert self.max_input_len + self.max_output_len <= 4096, "Max length exceeds the constraint"
self.dtype = dtype
self.head_dim = model.config.hidden_size // model.config.num_attention_heads
self.head_num = model.config.num_attention_heads
num_hidden_layers = (
model.config.num_hidden_layers if hasattr(model.config, "num_hidden_layers") else model.config.num_layers
)
self.layer_num = num_hidden_layers
self.multi_query_group_num = (
model.config.multi_query_group_num if hasattr(model.config, "multi_query_group_num") else 0
)
self.tp_size = -1 # to be set with given shard config in self.prepare_shard_config
self.cache_manager = None
self.max_dq_buffer_size = 1
self.max_inner_outer_dim = 1
self.gptq_temp_state_buffer = None
self.gptq_temp_dq_buffer = None
self.bits = -1
self.use_act_order = False
self.shard_config = shard_config
self.model = None
# optimize the original model by sharding with ShardFormer
self._optimize_model(model=model.to(device))
def _init_manager(self) -> None:
assert self.tp_size >= 1, "TP size not initialized without providing a valid ShardConfig"
assert self.head_num % self.tp_size == 0, f"Cannot shard {self.head_num} heads with tp size {self.tp_size}"
self.head_num //= self.tp_size # update sharded number of heads
if self.multi_query_group_num:
# NOTE the logic of MQA tensor parallelism should be specified.
assert (
self.multi_query_group_num % self.tp_size == 0
), f"Cannot shard {self.multi_query_group_num} query groups with tp size {self.tp_size}"
self.cache_manager = MemoryManager(
self.max_total_token_num,
self.dtype,
self.multi_query_group_num // self.tp_size,
self.head_dim,
self.layer_num,
)
else:
self.cache_manager = MemoryManager(
self.max_total_token_num, self.dtype, self.head_num, self.head_dim, self.layer_num
)
def _post_init_gptq_buffer(self, model: nn.Module) -> None:
from colossalai.inference.quant.gptq.cai_gptq import CaiQuantLinear
HAS_GPTQ_CUDA = False
try:
from colossalai.kernel.op_builder.gptq import GPTQBuilder
gptq_cuda = GPTQBuilder().load()
HAS_GPTQ_CUDA = True
except ImportError:
warnings.warn('CUDA gptq is not installed')
HAS_GPTQ_CUDA = False
for name, submodule in model.named_modules():
if isinstance(submodule, CaiQuantLinear):
self.max_dq_buffer_size = max(self.max_dq_buffer_size, submodule.qweight.numel() * 8)
if self.use_act_order:
self.max_inner_outer_dim = max(self.max_inner_outer_dim, submodule.infeatures,
submodule.outfeatures)
self.bits = submodule.bits
if not (HAS_GPTQ_CUDA and self.bits == 4):
return
max_input_len = 1
if self.use_act_order:
max_input_len = self.max_input_len
# The temp_state buffer is required to reorder X in the act-order case.
# The temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill.
self.gptq_temp_state_buffer = torch.zeros((max_input_len, self.max_inner_outer_dim),
dtype=torch.float16,
device=torch.cuda.current_device())
self.gptq_temp_dq_buffer = torch.zeros((1, self.max_dq_buffer_size),
dtype=torch.float16,
device=torch.cuda.current_device())
gptq_cuda.prepare_buffers(torch.device(torch.cuda.current_device()), self.gptq_temp_state_buffer,
self.gptq_temp_dq_buffer)
# Using the default from exllama repo here.
matmul_recons_thd = 8
matmul_fused_remap = False
matmul_no_half2 = False
gptq_cuda.set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)
torch.cuda.empty_cache()
def _optimize_model(self, model: nn.Module) -> None:
"""
Optimize the original model by sharding with ShardFormer.
In further generation, use the sharded model instead of original model.
"""
# NOTE we will change to use an inference config later with additional attrs we want
assert self.shard_config.inference_only is True
shardformer = ShardFormer(shard_config=self.shard_config)
self._prepare_with_shard_config(shard_config=self.shard_config)
self._shard_model_by(shardformer, model)
def _prepare_with_shard_config(self, shard_config: Optional[ShardConfig] = None) -> ShardConfig:
"""Prepare the engine with a given ShardConfig.
Args:
shard_config (ShardConfig): shard config given to specify settings of the engine.
If not provided, a default ShardConfig with tp size 1 will be created.
"""
self.tp_size = 1
if shard_config is None:
shard_config = ShardConfig(
tensor_parallel_process_group=None,
pipeline_stage_manager=None,
enable_tensor_parallelism=False,
enable_fused_normalization=False,
enable_all_optimization=False,
enable_flash_attention=False,
enable_jit_fused=False,
inference_only=True,
)
else:
shard_config.inference_only = True
shard_config.pipeline_stage_manager = None
if shard_config.enable_tensor_parallelism:
self.tp_size = shard_config.tensor_parallel_size
self._init_manager()
return shard_config
def _shard_model_by(self, shardformer: ShardFormer, model: nn.Module) -> None:
"""Shard original model by the given ShardFormer and store the sharded model."""
assert (
self.tp_size == shardformer.shard_config.tensor_parallel_size
), "Discrepancy between the tp size of TPInferEngine and the tp size of shard config"
model_name = model.__class__.__name__
assert model_name in self.supported_models, f"Unsupported model cls {model_name} for TP inference."
policy = get_autopolicy(model, inference_only=True)
self.model, _ = shardformer.optimize(model, policy)
if self.shard_config.inference_gptq:
self._post_init_gptq_buffer(model)
self.model = self.model.cuda()
@property
def supported_models(self) -> List[str]:
return _supported_models
def generate(self, input_tokens: Union[BatchEncoding, dict, list, torch.Tensor], **generate_kwargs) -> torch.Tensor:
"""Generate token sequence.
Args:
input_tokens: could be one of the following types
1. BatchEncoding or dict (e.g. tokenizer batch_encode)
2. list of input token ids (e.g. appended result of tokenizer encode)
3. torch.Tensor (e.g. tokenizer encode with return_tensors='pt')
Returns:
torch.Tensor: The returned sequence is given inputs + generated_tokens.
"""
if isinstance(input_tokens, torch.Tensor):
input_tokens = dict(input_ids=input_tokens, attention_mask=torch.ones_like(input_tokens, dtype=torch.bool))
for t in input_tokens:
if torch.is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].cuda()
if "max_new_tokens" not in generate_kwargs:
generate_kwargs.update(max_new_tokens=self.max_output_len)
return self._generate_by_set_infer_state(input_tokens, **generate_kwargs)
def prepare_batch_state(self, inputs) -> BatchInferState:
"""
Create and prepare BatchInferState used for inference during model forwrad,
by processing each sequence of the given inputs.
Args:
inputs: should be one of the following types
1. BatchEncoding or dict (e.g. tokenizer batch_encode)
2. list of input token ids (e.g. appended result of tokenizer encode)
3. torch.Tensor (e.g. tokenizer encode with return_tensors='pt')
NOTE For torch.Tensor inputs representing a batch of inputs, we are unable to retrieve
the actual length (e.g. number of tokens) of each input without attention mask
Hence, for torch.Tensor with shape [bs, l] where bs > 1, we will assume
all the inputs in the batch has the maximum length l
Returns:
BatchInferState: the states for the current batch during inference
"""
if not isinstance(inputs, (BatchEncoding, dict, list, torch.Tensor)):
raise TypeError(f"inputs type {type(inputs)} is not supported in prepare_batch_state")
input_ids_list = None
attention_mask = None
if isinstance(inputs, (BatchEncoding, dict)):
input_ids_list = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
else:
input_ids_list = inputs
if isinstance(input_ids_list[0], int): # for a single input
input_ids_list = [input_ids_list]
attention_mask = [attention_mask] if attention_mask is not None else attention_mask
batch_size = len(input_ids_list)
seq_start_indexes = torch.zeros(batch_size, dtype=torch.int32, device="cuda")
seq_lengths = torch.zeros(batch_size, dtype=torch.int32, device="cuda")
start_index = 0
max_len_in_batch = -1
if isinstance(inputs, (BatchEncoding, dict)):
for i, attn_mask in enumerate(attention_mask):
curr_seq_len = len(attn_mask)
# if isinstance(attn_mask, torch.Tensor):
# curr_seq_len = int(torch.sum(attn_mask))
# else:
# curr_seq_len = int(sum(attn_mask))
seq_lengths[i] = curr_seq_len
seq_start_indexes[i] = start_index
start_index += curr_seq_len
max_len_in_batch = curr_seq_len if curr_seq_len > max_len_in_batch else max_len_in_batch
else:
length = max(len(input_id) for input_id in input_ids_list)
for i, input_ids in enumerate(input_ids_list):
curr_seq_len = length
seq_lengths[i] = curr_seq_len
seq_start_indexes[i] = start_index
start_index += curr_seq_len
max_len_in_batch = curr_seq_len if curr_seq_len > max_len_in_batch else max_len_in_batch
block_loc = torch.empty((batch_size, self.max_input_len + self.max_output_len), dtype=torch.long, device="cuda")
batch_infer_state = BatchInferState(batch_size, max_len_in_batch)
batch_infer_state.seq_len = seq_lengths.to("cuda")
batch_infer_state.start_loc = seq_start_indexes.to("cuda")
batch_infer_state.block_loc = block_loc
batch_infer_state.decode_layer_id = 0
batch_infer_state.past_key_values_len = 0
batch_infer_state.is_context_stage = True
batch_infer_state.set_cache_manager(self.cache_manager)
return batch_infer_state
@torch.no_grad()
def _generate_by_set_infer_state(self, input_tokens, **generate_kwargs) -> torch.Tensor:
"""
Generate output tokens by setting BatchInferState as an attribute to the model and calling model.generate
Args:
inputs: should be one of the following types
1. BatchEncoding or dict (e.g. tokenizer batch_encode)
2. list of input token ids (e.g. appended result of tokenizer encode)
3. torch.Tensor (e.g. tokenizer encode with return_tensors='pt')
"""
# for testing, always use sharded model
assert self.model is not None, "sharded model does not exist"
batch_infer_state = self.prepare_batch_state(input_tokens)
assert batch_infer_state.max_len_in_batch <= self.max_input_len, "max length in batch exceeds limit"
# set BatchInferState for the current batch as attr to model
# NOTE this is not a preferable way to pass BatchInferState during inference
# we might want to rewrite generate function (e.g. _generate_by_pass_infer_state)
# and pass BatchInferState via model forward
model = self.model
if isinstance(model, LlamaForCausalLM):
model = self.model.model
elif isinstance(model, BloomForCausalLM):
model = self.model.transformer
setattr(model, "infer_state", batch_infer_state)
outputs = self.model.generate(**input_tokens, **generate_kwargs, early_stopping=False)
# NOTE In future development, we're going to let the scheduler to handle the cache,
# instead of freeing space explicitly at the end of generation
self.cache_manager.free_all()
return outputs
# TODO might want to implement the func that generates output tokens by passing BatchInferState
# as an arg into model.forward.
# It requires rewriting model generate and replacing model forward.
@torch.no_grad()
def _generate_by_pass_infer_state(
self,
input_tokens,
max_out_length: int,
generation_config: Optional[GenerationConfig] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
**model_kwargs,
) -> torch.Tensor:
raise NotImplementedError("generate by passing BatchInferState is not implemented.")
# might want to use in rewritten generate method: use after model.forward
# BatchInferState is created and kept during generation
# after each iter of model forward, we should update BatchInferState
def _update_batch_state(self, infer_state: Optional[BatchInferState]) -> None:
batch_size = infer_state.batch_size
device = infer_state.start_loc.device
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device=device)
infer_state.seq_len += 1
# might want to create a sequence pool
# add a single request/sequence/input text at a time and record its length
# In other words, store the actual length of input tokens representing a single input text
# E.g. "Introduce landmarks in Beijing"
# => add request
# => record token length and other necessary information to be used
# => engine hold all these necessary information until `generate` (or other name) is called,
# => put information already recorded in batchinferstate and pass it to model forward
# => clear records in engine
def add_request():
raise NotImplementedError()