mirror of https://github.com/hpcaitech/ColossalAI
154 lines
6.1 KiB
Python
154 lines
6.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Prepare dataset for continual pre-training
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import math
|
|
import os
|
|
import time
|
|
from multiprocessing import cpu_count
|
|
|
|
from datasets import dataset_dict, load_dataset
|
|
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
from colossal_llama2.dataset.spliced_and_tokenized_dataset import (
|
|
supervised_tokenize,
|
|
ClosedToConstantLengthSplicedDataset,
|
|
)
|
|
|
|
logger = get_dist_logger()
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--data_input_dirs",
|
|
type=str,
|
|
required=True,
|
|
default=None,
|
|
help="Comma(i.e., ',') separated list of all data directories containing `.jsonl` data files.",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_dir", type=str, required=True, default=None, help="A directory containing the tokenizer"
|
|
)
|
|
parser.add_argument("--data_cache_dir", type=str, default="cache", help="Data cache directory")
|
|
parser.add_argument(
|
|
"--data_jsonl_output_dir",
|
|
type=str,
|
|
default="jsonl_output",
|
|
help="Output directory of spliced dataset with jsonl format",
|
|
)
|
|
parser.add_argument(
|
|
"--data_arrow_output_dir",
|
|
type=str,
|
|
default="arrow_output",
|
|
help="Output directory of spliced dataset with arrow format",
|
|
)
|
|
parser.add_argument("--max_length", type=int, default=4096, help="Max length of each spliced tokenized sequence")
|
|
parser.add_argument("--num_spliced_dataset_bins", type=int, default=10, help="Number of spliced dataset bins")
|
|
args = parser.parse_args()
|
|
|
|
if args.num_spliced_dataset_bins >= 100000:
|
|
raise ValueError("Too many spliced divisions, must be smaller than 100000")
|
|
|
|
assert not os.path.exists(args.data_cache_dir), f"Find existed data cache dir {args.data_cache_dir}"
|
|
assert not os.path.exists(
|
|
args.data_jsonl_output_dir
|
|
), f"Find existed jsonl data output dir {args.data_jsonl_output_dir}"
|
|
assert not os.path.exists(
|
|
args.data_arrow_output_dir
|
|
), f"Find existed arrow data output dir {args.data_arrow_output_dir}"
|
|
os.makedirs(args.data_jsonl_output_dir)
|
|
os.makedirs(args.data_arrow_output_dir)
|
|
|
|
# Prepare to all input datasets
|
|
input_data_paths = []
|
|
input_data_dirs = args.data_input_dirs.split(",")
|
|
for ds_dir in input_data_dirs:
|
|
ds_dir = os.path.abspath(ds_dir)
|
|
assert os.path.exists(ds_dir), f"Not find data dir {ds_dir}"
|
|
ds_files = [name for name in os.listdir(ds_dir) if name.endswith(".jsonl")]
|
|
ds_paths = [os.path.join(ds_dir, name) for name in ds_files]
|
|
input_data_paths.extend(ds_paths)
|
|
|
|
# Prepare to data splitting.
|
|
train_splits = []
|
|
split_interval = math.ceil(100 / args.num_spliced_dataset_bins)
|
|
for i in range(0, 100, split_interval):
|
|
start = i
|
|
end = i + split_interval
|
|
if end > 100:
|
|
end = 100
|
|
train_splits.append(f"train[{start}%:{end}%]")
|
|
|
|
# Prepare to the tokenizer.
|
|
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_dir)
|
|
tokenizer.add_bos_token = False
|
|
tokenizer.add_eos_token = False
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
|
|
list_dataset = load_dataset(
|
|
path="json",
|
|
data_files=input_data_paths,
|
|
cache_dir=os.path.join(args.data_cache_dir, "raw"),
|
|
keep_in_memory=False,
|
|
split=train_splits,
|
|
num_proc=cpu_count(),
|
|
)
|
|
for index, dataset in enumerate(list_dataset):
|
|
assert isinstance(dataset, dataset_dict.Dataset)
|
|
logger.info(f"Start to process part-{index}/{len(list_dataset)} of all original datasets.")
|
|
dataset = dataset.map(
|
|
function=supervised_tokenize,
|
|
fn_kwargs={"tokenizer": tokenizer, "max_length": args.max_length},
|
|
keep_in_memory=False,
|
|
num_proc=min(len(dataset), cpu_count()),
|
|
)
|
|
dataset = dataset.remove_columns(column_names=["source", "target", "category"])
|
|
dataset = dataset.sort(column_names=("seq_category", "seq_length"), reverse=False, keep_in_memory=False)
|
|
dataset = dataset.remove_columns(column_names=["seq_category", "seq_length"])
|
|
spliced_dataset = ClosedToConstantLengthSplicedDataset(
|
|
dataset=dataset, tokenizer=tokenizer, max_length=args.max_length, error_strict=False
|
|
)
|
|
# Save each jsonl spliced dataset.
|
|
output_index = "0" * (5 - len(str(index))) + str(index)
|
|
output_name = f"part-{output_index}"
|
|
output_jsonl_path = os.path.join(args.data_jsonl_output_dir, output_name + ".jsonl")
|
|
st = time.time()
|
|
with open(file=output_jsonl_path, mode="w", encoding="utf-8") as fp_writer:
|
|
spliced_count = 0
|
|
for spliced_data_point in spliced_dataset:
|
|
if spliced_count % 500 == 0:
|
|
logger.info(f"processing {spliced_count} spliced data points for {fp_writer.name}")
|
|
spliced_count += 1
|
|
fp_writer.write(json.dumps(spliced_data_point, ensure_ascii=False) + "\n")
|
|
logger.info(
|
|
f"Current file {fp_writer.name}; "
|
|
f"Data size: {len(spliced_dataset)}; "
|
|
f"Spliced data size: {spliced_dataset.current_size}; "
|
|
f"Splicing compression rate: {round(spliced_dataset.current_size / len(spliced_dataset), 6)}; "
|
|
f"Time cost: {round((time.time() - st) / 60, 6)} minutes."
|
|
)
|
|
|
|
# Save each arrow spliced dataset
|
|
output_arrow_path = os.path.join(args.data_arrow_output_dir, output_name)
|
|
logger.info(f"Start to save {output_arrow_path}")
|
|
spliced_dataset = load_dataset(
|
|
path="json",
|
|
data_files=[output_jsonl_path],
|
|
cache_dir=os.path.join(args.data_cache_dir, "spliced_and_tokenized"),
|
|
keep_in_memory=False,
|
|
num_proc=cpu_count(),
|
|
split="train",
|
|
)
|
|
spliced_dataset.save_to_disk(dataset_path=output_arrow_path, num_proc=min(len(spliced_dataset), cpu_count()))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|