ColossalAI/examples/tutorial/hybrid_parallel/train.py

141 lines
4.3 KiB
Python

import os
import torch
from titans.model.vit.vit import _create_vit_model
from tqdm import tqdm
import colossalai
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.nn import CrossEntropyLoss
from colossalai.legacy.pipeline.pipelinable import PipelinableContext
from colossalai.logging import get_dist_logger
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.utils import is_using_pp
class DummyDataloader:
def __init__(self, length, batch_size):
self.length = length
self.batch_size = batch_size
def generate(self):
data = torch.rand(self.batch_size, 3, 224, 224)
label = torch.randint(low=0, high=10, size=(self.batch_size,))
return data, label
def __iter__(self):
self.step = 0
return self
def __next__(self):
if self.step < self.length:
self.step += 1
return self.generate()
else:
raise StopIteration
def __len__(self):
return self.length
def main():
# launch from torch
parser = colossalai.get_default_parser()
args = parser.parse_args()
colossalai.launch_from_torch(config=args.config)
# get logger
logger = get_dist_logger()
logger.info("initialized distributed environment", ranks=[0])
if hasattr(gpc.config, "LOG_PATH"):
if gpc.get_global_rank() == 0:
log_path = gpc.config.LOG_PATH
if not os.path.exists(log_path):
os.mkdir(log_path)
logger.log_to_file(log_path)
use_pipeline = is_using_pp()
# create model
model_kwargs = dict(
img_size=gpc.config.IMG_SIZE,
patch_size=gpc.config.PATCH_SIZE,
hidden_size=gpc.config.HIDDEN_SIZE,
depth=gpc.config.DEPTH,
num_heads=gpc.config.NUM_HEADS,
mlp_ratio=gpc.config.MLP_RATIO,
num_classes=10,
init_method="jax",
checkpoint=gpc.config.CHECKPOINT,
)
if use_pipeline:
pipelinable = PipelinableContext()
with pipelinable:
model = _create_vit_model(**model_kwargs)
pipelinable.to_layer_list()
pipelinable.policy = "uniform"
model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
else:
model = _create_vit_model(**model_kwargs)
# count number of parameters
total_numel = 0
for p in model.parameters():
total_numel += p.numel()
if not gpc.is_initialized(ParallelMode.PIPELINE):
pipeline_stage = 0
else:
pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE)
logger.info(f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
# use synthetic dataset
# we train for 10 steps and eval for 5 steps per epoch
train_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
test_dataloader = DummyDataloader(length=5, batch_size=gpc.config.BATCH_SIZE)
# create loss function
criterion = CrossEntropyLoss(label_smoothing=0.1)
# create optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
# create lr scheduler
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=gpc.config.WARMUP_EPOCHS
)
# initialize
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
)
logger.info("Engine is built", ranks=[0])
for epoch in range(gpc.config.NUM_EPOCHS):
# training
engine.train()
data_iter = iter(train_dataloader)
if gpc.get_global_rank() == 0:
description = "Epoch {} / {}".format(epoch, gpc.config.NUM_EPOCHS)
progress = tqdm(range(len(train_dataloader)), desc=description)
else:
progress = range(len(train_dataloader))
for _ in progress:
engine.zero_grad()
engine.execute_schedule(data_iter, return_output_label=False)
engine.step()
lr_scheduler.step()
gpc.destroy()
if __name__ == "__main__":
main()