mirror of https://github.com/hpcaitech/ColossalAI
170 lines
5.4 KiB
Python
170 lines
5.4 KiB
Python
import argparse
|
|
import glob
|
|
import os
|
|
import sys
|
|
from multiprocessing import cpu_count
|
|
|
|
import numpy as np
|
|
import scann
|
|
from ldm.util import parallel_data_prefetch
|
|
from tqdm import tqdm
|
|
|
|
|
|
def search_bruteforce(searcher):
|
|
return searcher.score_brute_force().build()
|
|
|
|
|
|
def search_partioned_ah(
|
|
searcher, dims_per_block, aiq_threshold, reorder_k, partioning_trainsize, num_leaves, num_leaves_to_search
|
|
):
|
|
return (
|
|
searcher.tree(
|
|
num_leaves=num_leaves, num_leaves_to_search=num_leaves_to_search, training_sample_size=partioning_trainsize
|
|
)
|
|
.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold)
|
|
.reorder(reorder_k)
|
|
.build()
|
|
)
|
|
|
|
|
|
def search_ah(searcher, dims_per_block, aiq_threshold, reorder_k):
|
|
return (
|
|
searcher.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(reorder_k).build()
|
|
)
|
|
|
|
|
|
def load_datapool(dpath):
|
|
def load_single_file(saved_embeddings):
|
|
compressed = np.load(saved_embeddings)
|
|
database = {key: compressed[key] for key in compressed.files}
|
|
return database
|
|
|
|
def load_multi_files(data_archive):
|
|
database = {key: [] for key in data_archive[0].files}
|
|
for d in tqdm(data_archive, desc=f"Loading datapool from {len(data_archive)} individual files."):
|
|
for key in d.files:
|
|
database[key].append(d[key])
|
|
|
|
return database
|
|
|
|
print(f'Load saved patch embedding from "{dpath}"')
|
|
file_content = glob.glob(os.path.join(dpath, "*.npz"))
|
|
|
|
if len(file_content) == 1:
|
|
data_pool = load_single_file(file_content[0])
|
|
elif len(file_content) > 1:
|
|
data = [np.load(f) for f in file_content]
|
|
prefetched_data = parallel_data_prefetch(
|
|
load_multi_files, data, n_proc=min(len(data), cpu_count()), target_data_type="dict"
|
|
)
|
|
|
|
data_pool = {
|
|
key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in prefetched_data[0].keys()
|
|
}
|
|
else:
|
|
raise ValueError(f'No npz-files in specified path "{dpath}" is this directory existing?')
|
|
|
|
print(f'Finished loading of retrieval database of length {data_pool["embedding"].shape[0]}.')
|
|
return data_pool
|
|
|
|
|
|
def train_searcher(
|
|
opt,
|
|
metric="dot_product",
|
|
partioning_trainsize=None,
|
|
reorder_k=None,
|
|
# todo tune
|
|
aiq_thld=0.2,
|
|
dims_per_block=2,
|
|
num_leaves=None,
|
|
num_leaves_to_search=None,
|
|
):
|
|
data_pool = load_datapool(opt.database)
|
|
k = opt.knn
|
|
|
|
if not reorder_k:
|
|
reorder_k = 2 * k
|
|
|
|
# normalize
|
|
# embeddings =
|
|
searcher = scann.scann_ops_pybind.builder(
|
|
data_pool["embedding"] / np.linalg.norm(data_pool["embedding"], axis=1)[:, np.newaxis], k, metric
|
|
)
|
|
pool_size = data_pool["embedding"].shape[0]
|
|
|
|
print(*(["#"] * 100))
|
|
print("Initializing scaNN searcher with the following values:")
|
|
print(f"k: {k}")
|
|
print(f"metric: {metric}")
|
|
print(f"reorder_k: {reorder_k}")
|
|
print(f"anisotropic_quantization_threshold: {aiq_thld}")
|
|
print(f"dims_per_block: {dims_per_block}")
|
|
print(*(["#"] * 100))
|
|
print("Start training searcher....")
|
|
print(f"N samples in pool is {pool_size}")
|
|
|
|
# this reflects the recommended design choices proposed at
|
|
# https://github.com/google-research/google-research/blob/aca5f2e44e301af172590bb8e65711f0c9ee0cfd/scann/docs/algorithms.md
|
|
if pool_size < 2e4:
|
|
print("Using brute force search.")
|
|
searcher = search_bruteforce(searcher)
|
|
elif 2e4 <= pool_size and pool_size < 1e5:
|
|
print("Using asymmetric hashing search and reordering.")
|
|
searcher = search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
|
|
else:
|
|
print("Using using partioning, asymmetric hashing search and reordering.")
|
|
|
|
if not partioning_trainsize:
|
|
partioning_trainsize = data_pool["embedding"].shape[0] // 10
|
|
if not num_leaves:
|
|
num_leaves = int(np.sqrt(pool_size))
|
|
|
|
if not num_leaves_to_search:
|
|
num_leaves_to_search = max(num_leaves // 20, 1)
|
|
|
|
print("Partitioning params:")
|
|
print(f"num_leaves: {num_leaves}")
|
|
print(f"num_leaves_to_search: {num_leaves_to_search}")
|
|
# self.searcher = self.search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
|
|
searcher = search_partioned_ah(
|
|
searcher, dims_per_block, aiq_thld, reorder_k, partioning_trainsize, num_leaves, num_leaves_to_search
|
|
)
|
|
|
|
print("Finish training searcher")
|
|
searcher_savedir = opt.target_path
|
|
os.makedirs(searcher_savedir, exist_ok=True)
|
|
searcher.serialize(searcher_savedir)
|
|
print(f'Saved trained searcher under "{searcher_savedir}"')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sys.path.append(os.getcwd())
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--database",
|
|
"-d",
|
|
default="data/rdm/retrieval_databases/openimages",
|
|
type=str,
|
|
help="path to folder containing the clip feature of the database",
|
|
)
|
|
parser.add_argument(
|
|
"--target_path",
|
|
"-t",
|
|
default="data/rdm/searchers/openimages",
|
|
type=str,
|
|
help="path to the target folder where the searcher shall be stored.",
|
|
)
|
|
parser.add_argument(
|
|
"--knn",
|
|
"-k",
|
|
default=20,
|
|
type=int,
|
|
help="number of nearest neighbors, for which the searcher shall be optimized",
|
|
)
|
|
|
|
opt, _ = parser.parse_known_args()
|
|
|
|
train_searcher(
|
|
opt,
|
|
)
|