ColossalAI/applications/Chat/evaluate/generate_answers.py

174 lines
7.1 KiB
Python

import argparse
import os
import random
import copy
import math
from tqdm import tqdm
import torch
import torch.distributed as dist
import transformers
from coati.models.bloom import BLOOMActor
from coati.models.gpt import GPTActor
from coati.models.opt import OPTActor
from coati.models.roberta import RoBERTaActor
from coati.models.llama import LlamaActor
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from transformers import AutoTokenizer, RobertaTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.logging import get_dist_logger
from utils import jload, jdump, is_rank_0
logger = get_dist_logger()
PROMPT_DICT = {
"prompt_input":
("Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"),
"prompt_no_input": ("Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"),
}
def generate(args):
# torch.cuda.set_per_process_memory_fraction(0.4)
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2_cpu':
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
world_size = dist.get_world_size()
rank = dist.get_rank()
with strategy.model_init_context():
if args.model == 'gpt2':
actor = GPTActor(pretrained=args.model_path).to(
torch.cuda.current_device())
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.model_path).to(
torch.cuda.current_device())
elif args.model == 'opt':
actor = OPTActor(pretrained=args.model_path).to(
torch.cuda.current_device())
elif args.model == 'roberta':
actor = RoBERTaActor(pretrained=args.model_path).to(
torch.cuda.current_device())
elif args.model == 'llama':
actor = LlamaActor(pretrained=args.model_path).to(
torch.float16).to(torch.cuda.current_device())
else:
raise ValueError(f'Unsupported model "{args.model}"')
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m')
elif args.model == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
elif args.model == 'llama':
tokenizer = AutoTokenizer.from_pretrained(args.model_path,
padding_side="right",
use_fast=False,
)
tokenizer.eos_token = '<\s>'
else:
raise ValueError(f'Unsupported model "{args.model}"')
questions = []
if args.max_datasets_size is not None:
questions = random.sample(jload(args.dataset), args.max_datasets_size)
if is_rank_0():
logger.info(
f"Limiting dataset to {args.max_datasets_size} examples.")
questions = questions[rank:args.max_datasets_size:world_size]
answers = copy.deepcopy(questions)
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
sources = [
prompt_input.format_map(example) if example.get(
"input", "") != "" else prompt_no_input.format_map(example)
for example in questions
]
if is_rank_0():
logger.info("Tokenizing inputs... This may take some time...")
input_ids_list = []
for string in sources:
input_ids = tokenizer.encode(string, return_tensors='pt').squeeze(0)
input_ids_list.append(input_ids)
bar = tqdm(range(math.ceil(len(input_ids_list)/args.batch_size)),
desc=f'steps', disable=not is_rank_0())
actor.eval()
with torch.no_grad():
for i in range(0, len(input_ids_list), args.batch_size):
batch = input_ids_list[i:i+args.batch_size]
batch = [i.flip(dims=[0]) for i in batch]
batch = torch.nn.utils.rnn.pad_sequence(batch,
batch_first=True,
padding_value=tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0).to(torch.cuda.current_device())
batch = batch.flip(dims=[1])
attention_mask = batch.ne(tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0)
outputs = actor.model.generate(batch, attention_mask=attention_mask,
max_length=args.max_length,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
for j in range(batch.size(0)):
answers[i +
j]['output'] = outputs[j].split("### Response:")[1].strip()
bar.update()
jdump(answers, os.path.join(args.answer_path,
f'{args.model_name}_answers_rank{rank}.json'))
if is_rank_0():
logger.info(
f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.3f} GB')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini',
'colossalai_zero2', 'colossalai_zero2_cpu'],
default='naive')
parser.add_argument('--model', default='gpt2',
choices=['gpt2', 'bloom', 'opt', 'roberta', 'llama'])
parser.add_argument('--model_path', type=str, default=None)
parser.add_argument('--model_name', type=str, default='model')
parser.add_argument('--dataset', type=str, default=None)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--max_datasets_size', type=int, default=None)
parser.add_argument('--answer_path', type=str, default="answer")
parser.add_argument('--max_length', type=int, default=1024)
args = parser.parse_args()
generate(args)