mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
651 lines
26 KiB
651 lines
26 KiB
import enum
|
|
import functools
|
|
import inspect
|
|
import operator
|
|
from contextlib import contextmanager
|
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
from torch.fx import Graph, Node, Proxy, Tracer
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from colossalai.fx import ColoGraphModule, compatibility, is_compatible_with_meta
|
|
from colossalai.fx.tracer._tracer_utils import extract_meta, is_element_in_list
|
|
from colossalai.fx.tracer.bias_addition_patch import func_to_func_dict, method_to_func_dict, module_to_func_dict
|
|
from colossalai.fx.tracer.registry import (
|
|
bias_addition_function,
|
|
bias_addition_method,
|
|
bias_addition_module,
|
|
meta_patched_function,
|
|
meta_patched_module,
|
|
)
|
|
|
|
if is_compatible_with_meta():
|
|
from colossalai.fx.profiler import MetaTensor
|
|
|
|
Target = Union[Callable[..., Any], str]
|
|
Argument = Optional[Union[Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types
|
|
List[Any], # actually Argument
|
|
Dict[str, Any], # actually Argument
|
|
slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
|
|
'Node',]]
|
|
_CScriptMethod = ['add', 'mul', 'sub', 'div']
|
|
_TorchNewMethod = [
|
|
"arange", "zeros", "zeros_like", "ones", "ones_like", "full", "full_like", "empty", "empty_like", "eye", "tensor",
|
|
"finfo"
|
|
]
|
|
_TensorPropertyMethod = ["dtype", "shape", "device", "requires_grad", "grad", "grad_fn", "data"]
|
|
|
|
|
|
def _truncate_suffix(s: str):
|
|
import re
|
|
return re.sub(r'_\d+$', '', s)
|
|
|
|
|
|
def default_device():
|
|
return torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
|
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
class ColoProxy(Proxy):
|
|
|
|
def __init__(self, *args, data=None, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._meta_data = data
|
|
|
|
@property
|
|
def meta_data(self):
|
|
return self._meta_data
|
|
|
|
@meta_data.setter
|
|
def meta_data(self, args):
|
|
wrap_fn = lambda x: MetaTensor(x) if isinstance(x, torch.Tensor) else x
|
|
self._meta_data = tree_map(wrap_fn, args)
|
|
|
|
@classmethod
|
|
def __torch_function__(cls, orig_method, types, args=(), kwargs=None):
|
|
proxy = cls.from_torch_proxy(super().__torch_function__(orig_method, types, args, kwargs))
|
|
unwrap_fn = lambda p: p.meta_data if isinstance(p, ColoProxy) else p
|
|
kwargs = {} if kwargs is None else kwargs
|
|
if proxy.meta_data is None:
|
|
proxy.meta_data = orig_method(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
|
|
return proxy
|
|
|
|
@classmethod
|
|
def from_torch_proxy(cls, proxy: Proxy):
|
|
return cls(proxy.node, proxy.tracer)
|
|
|
|
def __repr__(self):
|
|
return f"ColoProxy({self.node.name}, meta_data={self.meta_data})"
|
|
|
|
def __len__(self):
|
|
return len(self.meta_data)
|
|
|
|
def __int__(self):
|
|
return int(self.meta_data)
|
|
|
|
def __index__(self):
|
|
try:
|
|
return int(self.meta_data)
|
|
except:
|
|
return torch.zeros(self.meta_data.shape, dtype=torch.bool).numpy().__index__()
|
|
|
|
def __float__(self):
|
|
return float(self.meta_data)
|
|
|
|
def __bool__(self):
|
|
return self.meta_data
|
|
|
|
def __getattr__(self, k):
|
|
return ColoAttribute(self, k, getattr(self._meta_data, k, None))
|
|
|
|
def __setitem__(self, key, value):
|
|
proxy = self.tracer.create_proxy('call_function', operator.setitem, (self, key, value), {})
|
|
proxy.meta_data = self._meta_data
|
|
return proxy
|
|
|
|
def __contains__(self, key):
|
|
if self.node.op == "placeholder":
|
|
# this is used to handle like
|
|
# if x in kwargs
|
|
# we don't handle this case for now
|
|
return False
|
|
return super().__contains__(key)
|
|
|
|
def __isinstancecheck__(self, type):
|
|
return isinstance(self.meta_data, type)
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.meta_data.shape
|
|
|
|
@property
|
|
def ndim(self):
|
|
return self.meta_data.ndim
|
|
|
|
@property
|
|
def device(self):
|
|
proxy = self.tracer.create_proxy('call_function', getattr, (self, 'device'), {})
|
|
proxy.meta_data = self.meta_data.device
|
|
return proxy
|
|
|
|
@property
|
|
def dtype(self):
|
|
proxy = self.tracer.create_proxy('call_function', getattr, (self, 'dtype'), {})
|
|
proxy.meta_data = self.meta_data.dtype
|
|
return proxy
|
|
|
|
def to(self, *args, **kwargs):
|
|
return self.tracer.create_proxy('call_method', 'to', (self, *args), {**kwargs})
|
|
|
|
def cpu(self, *args, **kwargs):
|
|
return self.tracer.create_proxy('call_method', 'cpu', (self, *args), {**kwargs})
|
|
|
|
def cuda(self, *args, **kwargs):
|
|
return self.tracer.create_proxy('call_method', 'cuda', (self, *args), {**kwargs})
|
|
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
class ColoAttribute(ColoProxy):
|
|
|
|
def __init__(self, root, attr: str, data=None):
|
|
self.root = root
|
|
self.attr = attr
|
|
self.tracer = root.tracer
|
|
self._meta_data = data
|
|
self._node: Optional[Node] = None
|
|
|
|
@property
|
|
def node(self):
|
|
# the node for attributes is added lazily, since most will just be method calls
|
|
# which do not rely on the getitem call
|
|
if self._node is None:
|
|
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
|
|
return self._node
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
|
|
|
|
def __repr__(self):
|
|
return f"ColoAttribute({self.node.name}, attr={self.attr})"
|
|
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
class ColoTracer(Tracer):
|
|
|
|
def __init__(self, trace_act_ckpt: bool = False, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._disable_module_getattr = False
|
|
self.proxy_buffer_attributes = True
|
|
|
|
# whether the tracer will record the usage of torch.utils.checkpoint
|
|
self.trace_act_ckpt = trace_act_ckpt
|
|
# whether the current tracing occurs within the activation checkpoint functions
|
|
self.inside_torch_checkpoint_func = False
|
|
self.act_ckpt_region_count = 0
|
|
|
|
def proxy(self, node: Node) -> 'ColoProxy':
|
|
return ColoProxy(node, self)
|
|
|
|
def create_proxy(self,
|
|
kind: str,
|
|
target: Target,
|
|
args: Tuple[Any, ...],
|
|
kwargs: Dict[str, Any],
|
|
name: Optional[str] = None,
|
|
type_expr: Optional[Any] = None,
|
|
proxy_factory_fn: Callable[[Node], 'Proxy'] = None):
|
|
|
|
proxy: ColoProxy = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
|
|
unwrap_fn = lambda p: p.meta_data if isinstance(p, ColoProxy) else p
|
|
if kind == 'placeholder':
|
|
proxy.meta_data = self.meta_args[target] if target in self.meta_args else self.concrete_args.get(
|
|
_truncate_suffix(target), None)
|
|
elif kind == 'get_attr':
|
|
self._disable_module_getattr = True
|
|
try:
|
|
attr_itr = self.root
|
|
atoms = target.split(".")
|
|
for atom in atoms:
|
|
attr_itr = getattr(attr_itr, atom)
|
|
proxy.meta_data = attr_itr
|
|
finally:
|
|
self._disable_module_getattr = False
|
|
elif kind == 'call_function':
|
|
proxy.meta_data = target(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
|
|
elif kind == 'call_method':
|
|
self._disable_module_getattr = True
|
|
try:
|
|
if target == '__call__':
|
|
proxy.meta_data = unwrap_fn(args[0])(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs))
|
|
else:
|
|
if target not in _TensorPropertyMethod:
|
|
proxy._meta_data = getattr(unwrap_fn(args[0]), target)(*tree_map(unwrap_fn, args[1:]),
|
|
**tree_map(unwrap_fn, kwargs))
|
|
finally:
|
|
self._disable_module_getattr = False
|
|
elif kind == 'call_module':
|
|
mod = self.root.get_submodule(target)
|
|
self._disable_module_getattr = True
|
|
try:
|
|
proxy.meta_data = mod.forward(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
|
|
finally:
|
|
self._disable_module_getattr = False
|
|
return proxy
|
|
|
|
def create_node(self, *args, **kwargs) -> Node:
|
|
node = super().create_node(*args, **kwargs)
|
|
|
|
if self.inside_torch_checkpoint_func:
|
|
# annotate the activation checkpoint module
|
|
node.meta['activation_checkpoint'] = self.act_ckpt_region_count
|
|
return node
|
|
|
|
def trace(self,
|
|
root: torch.nn.Module,
|
|
concrete_args: Optional[Dict[str, torch.Tensor]] = None,
|
|
meta_args: Optional[Dict[str, torch.Tensor]] = None) -> Graph:
|
|
|
|
if meta_args is None:
|
|
meta_args = {}
|
|
|
|
if concrete_args is None:
|
|
concrete_args = {}
|
|
|
|
# check concrete and meta args have valid names
|
|
sig = inspect.signature(root.forward)
|
|
sig_names = set(sig.parameters.keys())
|
|
meta_arg_names = set(meta_args.keys())
|
|
|
|
# update concrete args with default values
|
|
non_meta_arg_names = sig_names - meta_arg_names
|
|
for k, v in sig.parameters.items():
|
|
if k in non_meta_arg_names and \
|
|
k not in concrete_args and \
|
|
v.default is not inspect.Parameter.empty:
|
|
concrete_args[k] = v.default
|
|
|
|
# get non concrete arg names
|
|
concrete_arg_names = set(concrete_args.keys())
|
|
non_concrete_arg_names = sig_names - concrete_arg_names
|
|
|
|
def _check_arg_name_valid(names):
|
|
success, element = is_element_in_list(names, sig_names)
|
|
if not success:
|
|
raise KeyError(
|
|
f"argument {element} is not found in the signature of {root.__class__.__name__}'s forward function")
|
|
|
|
_check_arg_name_valid(meta_arg_names)
|
|
_check_arg_name_valid(concrete_arg_names)
|
|
|
|
self.concrete_args = concrete_args
|
|
self.meta_args = meta_args
|
|
|
|
with _TorchTensorOverride(self), self.trace_activation_checkpoint(enabled=self.trace_act_ckpt):
|
|
self.graph = super().trace(root, concrete_args=concrete_args)
|
|
self.graph.lint()
|
|
return self.graph
|
|
|
|
@contextmanager
|
|
def trace_activation_checkpoint(self, enabled: bool):
|
|
if enabled:
|
|
orig_ckpt_func = torch.utils.checkpoint.CheckpointFunction
|
|
|
|
class PatchedCheckpointFunction(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, run_function, preserve_rng_state, *args):
|
|
# signal that the current tracing occurs within activaton checkpoint part
|
|
self.inside_torch_checkpoint_func = True
|
|
out = run_function(*args)
|
|
self.inside_torch_checkpoint_func = False
|
|
self.act_ckpt_region_count += 1
|
|
return out
|
|
|
|
@staticmethod
|
|
def backward(ctx: Any, *grad_outputs: Any) -> Any:
|
|
raise NotImplementedError(
|
|
"We do not implement the backward pass as we only trace the forward pass.")
|
|
|
|
# override the checkpoint function
|
|
torch.utils.checkpoint.CheckpointFunction = PatchedCheckpointFunction
|
|
yield
|
|
|
|
if enabled:
|
|
# recover the checkpoint function upon exit
|
|
torch.utils.checkpoint.CheckpointFunction = orig_ckpt_func
|
|
|
|
def _post_check(self, non_concrete_arg_names: Set[str]):
|
|
# This is necessary because concrete args are added as input to the traced module since
|
|
# https://github.com/pytorch/pytorch/pull/55888.
|
|
for node in self.graph.nodes:
|
|
if node.op == "placeholder":
|
|
# Removing default values for inputs as the forward pass will fail with them.
|
|
if node.target in non_concrete_arg_names:
|
|
node.args = ()
|
|
# Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor].
|
|
# It cannot infer on the attributes and methods the input should have, and fails.
|
|
node.type = torch.Tensor
|
|
# It is a concrete arg so it is not used and should be removed.
|
|
else:
|
|
if hasattr(torch.fx._symbolic_trace, "_assert_is_none"):
|
|
# Newer versions of torch.fx emit an assert statement
|
|
# for concrete arguments; delete those before we delete
|
|
# the concrete arg.
|
|
to_delete = []
|
|
for user in node.users:
|
|
if user.target == torch.fx._symbolic_trace._assert_is_none:
|
|
to_delete.append(user)
|
|
for user in to_delete:
|
|
self.graph.erase_node(user)
|
|
|
|
self.graph.erase_node(node)
|
|
|
|
# TODO: solves GraphModule creation.
|
|
# Without this, return type annotation "Tuple" is causing code execution failure.
|
|
if node.op == "output":
|
|
node.type = None
|
|
self.graph.lint()
|
|
|
|
def _module_getattr(self, attr, attr_val, parameter_proxy_cache):
|
|
if getattr(self, "_disable_module_getattr", False):
|
|
return attr_val
|
|
|
|
def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache):
|
|
for n, p in collection_to_search:
|
|
if attr_val is p:
|
|
if n not in parameter_proxy_cache:
|
|
kwargs = {}
|
|
if 'proxy_factory_fn' in inspect.signature(self.create_proxy).parameters:
|
|
kwargs['proxy_factory_fn'] = (None if not self.param_shapes_constant else
|
|
lambda node: ColoProxy(self, node, n, attr_val))
|
|
val_proxy = self.create_proxy('get_attr', n, (), {}, **kwargs) # type: ignore[arg-type]
|
|
parameter_proxy_cache[n] = val_proxy
|
|
return parameter_proxy_cache[n]
|
|
return None
|
|
|
|
if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
|
|
maybe_buffer_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_buffers(), parameter_proxy_cache)
|
|
if maybe_buffer_proxy is not None:
|
|
return maybe_buffer_proxy
|
|
|
|
if isinstance(attr_val, torch.nn.Parameter):
|
|
maybe_parameter_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_parameters(),
|
|
parameter_proxy_cache)
|
|
if maybe_parameter_proxy is not None:
|
|
return maybe_parameter_proxy
|
|
|
|
return attr_val
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def symbolic_trace(
|
|
root: Union[torch.nn.Module, Callable[..., Any]],
|
|
concrete_args: Optional[Dict[str, Any]] = None,
|
|
meta_args: Optional[Dict[str, Any]] = None,
|
|
trace_act_ckpt=False,
|
|
) -> ColoGraphModule:
|
|
if is_compatible_with_meta():
|
|
if meta_args is not None:
|
|
root.to(default_device())
|
|
wrap_fn = lambda x: MetaTensor(x, fake_device=default_device()) if isinstance(x, torch.Tensor) else x
|
|
graph = ColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root,
|
|
concrete_args=concrete_args,
|
|
meta_args=tree_map(wrap_fn, meta_args))
|
|
root.cpu()
|
|
else:
|
|
graph = Tracer().trace(root, concrete_args=concrete_args)
|
|
else:
|
|
from .tracer import ColoTracer as OrigColoTracer
|
|
graph = OrigColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root,
|
|
concrete_args=concrete_args,
|
|
meta_args=meta_args)
|
|
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
|
|
return ColoGraphModule(root, graph, name)
|
|
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
class _TorchTensorOverride(object):
|
|
|
|
def __init__(self, tracer: Tracer):
|
|
self.overrides = {}
|
|
self.tracer = tracer
|
|
|
|
def __enter__(self):
|
|
|
|
def wrap_tensor_method(target):
|
|
|
|
@functools.wraps(target)
|
|
def wrapper(*args, **kwargs):
|
|
is_proxy = any(isinstance(p, ColoProxy) for p in args) | any(
|
|
isinstance(p, ColoProxy) for p in kwargs.values())
|
|
if is_proxy:
|
|
# if the arg is a proxy, then need to record this function called on this proxy
|
|
# e.g. torch.ones(size) where size is an input proxy
|
|
self.tracer._disable_module_getattr = True
|
|
try:
|
|
proxy = self.tracer.create_proxy('call_function', target, args, kwargs)
|
|
finally:
|
|
self.tracer._disable_module_getattr = False
|
|
return proxy
|
|
else:
|
|
return target(*args, **kwargs)
|
|
|
|
return wrapper, target
|
|
|
|
self.overrides = {
|
|
target: wrap_tensor_method(getattr(torch, target))
|
|
for target in _TorchNewMethod
|
|
if callable(getattr(torch, target))
|
|
}
|
|
for name, (wrapper, orig) in self.overrides.items():
|
|
setattr(torch, name, wrapper)
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
for name, (wrapper, orig) in self.overrides.items():
|
|
setattr(torch, name, orig)
|
|
|
|
|
|
def meta_prop_pass(gm: ColoGraphModule,
|
|
root: torch.nn.Module,
|
|
meta_args: Optional[Dict[str, Any]] = None,
|
|
concrete_args: Optional[Dict[str, torch.Tensor]] = None):
|
|
|
|
if meta_args is None:
|
|
meta_args = {}
|
|
|
|
if concrete_args is None:
|
|
concrete_args = {}
|
|
|
|
# check concrete and meta args have valid names
|
|
sig = inspect.signature(root.forward)
|
|
sig_names = set(sig.parameters.keys())
|
|
meta_arg_names = set(meta_args.keys())
|
|
|
|
# update concrete args with default values
|
|
non_meta_arg_names = sig_names - meta_arg_names
|
|
for k, v in sig.parameters.items():
|
|
if k in non_meta_arg_names and \
|
|
k not in concrete_args and \
|
|
v.default is not inspect.Parameter.empty:
|
|
concrete_args[k] = v.default
|
|
|
|
for node in gm.graph.nodes:
|
|
node._meta_data = _meta_data_computing(meta_args, concrete_args, root, node.op, node.target, node.args,
|
|
node.kwargs)
|
|
|
|
|
|
def _meta_data_computing(meta_args, concrete_args, root, kind, target, args, kwargs):
|
|
unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n
|
|
if kind == 'placeholder':
|
|
meta_out = meta_args[target] if target in meta_args else concrete_args.get(_truncate_suffix(target), None)
|
|
elif kind == 'get_attr':
|
|
attr_itr = root
|
|
atoms = target.split(".")
|
|
for atom in atoms:
|
|
attr_itr = getattr(attr_itr, atom)
|
|
meta_out = attr_itr
|
|
elif kind == 'call_function':
|
|
meta_out = target(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
|
|
elif kind == 'call_method':
|
|
if target == '__call__':
|
|
meta_out = unwrap_fn(args[0])(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs))
|
|
else:
|
|
if target not in _TensorPropertyMethod:
|
|
meta_out = getattr(unwrap_fn(args[0]), target)(*tree_map(unwrap_fn, args[1:]),
|
|
**tree_map(unwrap_fn, kwargs))
|
|
elif kind == 'call_module':
|
|
mod = root.get_submodule(target)
|
|
meta_out = mod.forward(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
|
|
else:
|
|
meta_out = None
|
|
return meta_out
|
|
|
|
|
|
def _meta_data_computing_v0(meta_args, root, kind, target, args, kwargs):
|
|
if kind == "placeholder" and target in meta_args and meta_args[target].is_meta:
|
|
meta_out = meta_args[target]
|
|
return meta_out
|
|
|
|
if target in [getattr(torch, torch_func) for torch_func in _TorchNewMethod]:
|
|
# NOTE: tensor constructors in PyTorch define the `device` argument as
|
|
# *kwargs-only*. That is why this works. If you add methods to
|
|
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
|
|
# this will break and you will likely see issues where we cannot infer
|
|
# the size of the output.
|
|
if "device" in kwargs:
|
|
kwargs["device"] = "meta"
|
|
|
|
try:
|
|
unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n
|
|
args_metas = tree_map(unwrap_fn, args)
|
|
kwargs_metas = tree_map(unwrap_fn, kwargs)
|
|
|
|
if kind == "call_function":
|
|
# fetch patched function
|
|
if meta_patched_function.has(target):
|
|
meta_target = meta_patched_function.get(target)
|
|
elif meta_patched_function.has(target.__name__):
|
|
# use name for some builtin op like @ (matmul)
|
|
meta_target = meta_patched_function.get(target.__name__)
|
|
else:
|
|
meta_target = target
|
|
|
|
meta_out = meta_target(*args_metas, **kwargs_metas)
|
|
|
|
if isinstance(meta_out, torch.Tensor):
|
|
meta_out = meta_out.to(device="meta")
|
|
elif kind == "call_method":
|
|
method = getattr(args_metas[0].__class__, target)
|
|
|
|
# fetch patched method
|
|
if meta_patched_function.has(method):
|
|
meta_target = meta_patched_function.get(method)
|
|
else:
|
|
meta_target = method
|
|
|
|
meta_out = meta_target(*args_metas, **kwargs_metas)
|
|
elif kind == "call_module":
|
|
mod = root.get_submodule(target)
|
|
mod_type = type(mod)
|
|
if meta_patched_module.has(mod_type):
|
|
meta_out = meta_patched_module.get(mod_type)(mod, *args_metas, **kwargs_metas)
|
|
else:
|
|
meta_out = mod(*args_metas, **kwargs_metas)
|
|
elif kind == "get_attr":
|
|
attr_itr = root
|
|
atoms = target.split(".")
|
|
for atom in atoms:
|
|
attr_itr = getattr(attr_itr, atom)
|
|
if isinstance(attr_itr, torch.nn.parameter.Parameter):
|
|
meta_out = torch.nn.Parameter(attr_itr.to(device="meta"))
|
|
elif isinstance(attr_itr, torch.Tensor):
|
|
meta_out = attr_itr.to(device="meta")
|
|
else:
|
|
meta_out = attr_itr
|
|
else:
|
|
return None
|
|
|
|
except Exception as e:
|
|
raise RuntimeError(f"Could not compute metadata for {kind} target {target}: {e}")
|
|
|
|
return meta_out
|
|
|
|
|
|
def bias_addition_pass(gm: ColoGraphModule, root_model: torch.nn.Module, meta_args: Optional[Dict[str, Any]] = None):
|
|
result_graph = Graph()
|
|
value_remap = {}
|
|
unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n
|
|
|
|
for orig_node in gm.graph.nodes:
|
|
assert hasattr(orig_node, "_meta_data")
|
|
kind = orig_node.op
|
|
target = orig_node.target
|
|
args = orig_node.args
|
|
kwargs = orig_node.kwargs
|
|
|
|
args_metas = tree_map(unwrap_fn, args)
|
|
tracer = ColoTracer()
|
|
tracer.graph = Graph(tracer_cls=ColoTracer)
|
|
tracer.root = root_model
|
|
|
|
def wrap_fn(n):
|
|
if isinstance(n, Node):
|
|
proxy = ColoProxy(n, tracer)
|
|
proxy.meta_data = n._meta_data
|
|
return proxy
|
|
return n
|
|
|
|
args_proxy = tree_map(wrap_fn, args)
|
|
kwargs_proxy = tree_map(wrap_fn, kwargs)
|
|
|
|
handle = None
|
|
if kind == "call_function":
|
|
if bias_addition_function.has(target):
|
|
if target == torch.nn.functional.linear:
|
|
if 'bias' in kwargs and kwargs['bias'] is not None:
|
|
function_to_substitute = func_to_func_dict[target]
|
|
handle = bias_addition_function.get(target)(tracer, target, args_proxy, kwargs_proxy,
|
|
function_to_substitute)
|
|
else:
|
|
function_to_substitute = func_to_func_dict[target]
|
|
handle = bias_addition_function.get(target)(tracer, target, args_proxy, kwargs_proxy,
|
|
function_to_substitute)
|
|
elif bias_addition_function.has(target.__name__):
|
|
# use name for some builtin op like @ (matmul)
|
|
function_to_substitute = func_to_func_dict[target]
|
|
handle = bias_addition_function.get(target.__name__)(tracer, target, args_proxy, kwargs_proxy,
|
|
function_to_substitute)
|
|
|
|
elif kind == "call_method":
|
|
method = getattr(args_metas[0].__class__, target)
|
|
if bias_addition_method.has(method):
|
|
function_to_substitute = method_to_func_dict[method]
|
|
handle = bias_addition_method.get(method)(tracer, target, args_proxy, kwargs_proxy,
|
|
function_to_substitute)
|
|
|
|
elif kind == "call_module":
|
|
# if not hasattr(self, "orig_forward"):
|
|
# raise AttributeError(f"{self} does not have an attribute called orig_forward")
|
|
mod = gm.get_submodule(target)
|
|
mod_type = type(mod)
|
|
if bias_addition_module.has(mod_type) and mod.bias is not None:
|
|
function_to_substitute = module_to_func_dict[mod_type]
|
|
handle = bias_addition_module.get(mod_type)(tracer, target, args_proxy, kwargs_proxy,
|
|
function_to_substitute)
|
|
|
|
if handle is not None:
|
|
handle.generate()
|
|
for node_inserted in tracer.graph.nodes:
|
|
value_remap[node_inserted] = result_graph.node_copy(node_inserted, lambda n: value_remap[n])
|
|
last_node = value_remap[node_inserted]
|
|
value_remap[orig_node] = last_node
|
|
else:
|
|
value_remap[orig_node] = result_graph.node_copy(orig_node, lambda n: value_remap[n])
|
|
|
|
del tracer
|
|
|
|
gm.graph = result_graph
|
|
gm.recompile()
|
|
meta_prop_pass(gm, root_model, meta_args)
|