You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/fx/tracer/_symbolic_trace.py

56 lines
2.1 KiB

from typing import Any, Callable, Dict, Optional, Union
import torch
from colossalai.fx import ColoGraphModule
from colossalai.fx._compatibility import compatibility
from .tracer import ColoTracer
@compatibility(is_backward_compatible=True)
def symbolic_trace(
root: Union[torch.nn.Module, Callable[..., Any]],
concrete_args: Optional[Dict[str, Any]] = None,
meta_args: Optional[Dict[str, Any]] = None,
trace_act_ckpt=False,
) -> ColoGraphModule:
"""
Symbolic tracing API
Given an ``nn.Module`` or function instance ``root``, this function will return a ``ColoGraphModule``
constructed by recording operations seen while tracing through ``root``.
With ``meta_args``, we can trace the model that are untraceable subject to control flow. If specified using
``meta_args`` only, the tracing can be done ahead of time.
Note that ``meta_args`` are kwargs, which contains the key of the argument's names and the value of the
argument's values.
Uses:
>>> model = ...
# if this works
>>> gm = symbolic_trace(model, concrete_args=concrete_args)
# else try this
>>> gm = symbolic_trace(model, concrete_args=concrete_args, meta_args={'x': torch.rand(1, 3, 224, 224, device='meta')})
Args:
root (Union[torch.nn.Module, Callable[..., Any]]): Module or function to be traced and converted
into a Graph representation.
concrete_args (Optional[Dict[str, Any]], optional): Concrete arguments to be used for tracing.
meta_args (Optional[Dict[str, Any]], optional): Inputs to be partially specialized, special for ``ColoTracer``.
Defaults to None.
Returns:
ColoGraphModule: A ``ColoGraphModule`` created from the recorded operations from ``root``.
Warnings:
This API is still under development and can incur some bugs. Feel free to report any bugs to the Colossal-AI team.
"""
graph = ColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root, concrete_args=concrete_args, meta_args=meta_args)
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
return ColoGraphModule(root, graph, name)