ColossalAI/tests/test_fx/test_pipeline/test_topo/test_topo.py

50 lines
1.2 KiB
Python

import pytest
import torch
import transformers
from topo_utils import MLP, check_topo, split_model_and_get_DAG
BATCH_SIZE = 1
SEQ_LENGHT = 16
@pytest.mark.skip('ShapeProp is not compatible with PyTorch 1.11.0')
def test_opt():
MODEL_LIST = [
MLP,
transformers.OPTModel,
]
CONFIGS = [
{
'dim': 10,
'layers': 12
},
transformers.OPTConfig(vocab_size=100, hidden_size=128, num_hidden_layers=4, num_attention_heads=4),
]
def data_gen_MLP():
x = torch.zeros((16, 10))
kwargs = dict(x=x)
return kwargs
def data_gen_OPT():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
DATAGEN = [
data_gen_MLP,
data_gen_OPT,
]
for i, model_cls in enumerate(MODEL_LIST):
model = model_cls(config=CONFIGS[i])
top_mod, topo = split_model_and_get_DAG(model, DATAGEN[i])
# print(f'{top_mod=}\n----\n{topo=}')
check_topo(top_mod, topo)
if __name__ == '__main__':
test_opt()