ColossalAI/tests/test_zero_data_parallel/test_shard_param.py

97 lines
3.2 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.zero.sharded_param import ShardedTensor, ShardedParam
from colossalai.utils import free_port
from colossalai.logging import get_dist_logger, disable_existing_loggers
from tests.test_zero_data_parallel.common import Net, CONFIG
def run_shard_tensor(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
t = ShardedTensor(tensor=torch.randn(world_size * 2, 3))
assert list(t.shape) == [world_size * 2, 3]
shard_strategy = TensorShardStrategy(process_group=None)
# test shard strategy
shard_strategy.shard([t])
assert list(t.shape) == [6]
shard_strategy.gather([t])
assert list(t.shape) == [world_size * 2, 3]
@pytest.mark.dist
def test_shard_tensor():
world_size = 2
run_func = partial(run_shard_tensor, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
def run_init_shard_param(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
param = torch.nn.Parameter(data=torch.rand(2, 3))
sparam = ShardedParam(param, None, True)
payload = sparam.payload(torch.device('cuda'))
assert (list(payload.shape) == [3])
del sparam
param_shape = (2, 3)
sparam = ShardedParam(param_shape, process_group=None, is_sharded=True, device=torch.device('cpu'))
payload = sparam.payload(torch.device('cuda'))
assert (list(payload.shape) == [3])
param_shape = (2, 3)
sparam = ShardedParam(param_shape, process_group=None, is_sharded=False, device=torch.device('cpu'))
payload = sparam.payload(torch.device('cuda'))
assert (list(payload.shape) == [2, 3])
def run_shard_param_check(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
logger = get_dist_logger()
model = Net()
# add an attribute as ca_attr to hijack the access to param.data
for _, param in model.named_parameters():
numel_ref = (param.numel() + world_size - 1) // world_size
param.ca_attr = ShardedParam(param)
param.ca_attr.shard()
param_data = param.ca_attr.payload(torch.device('cpu'))
assert (numel_ref == param_data.numel())
for _, param in model.named_parameters():
param.ca_attr.gather()
param_data = param.ca_attr.payload(torch.device('cpu'))
disable_existing_loggers([logger])
@pytest.mark.dist
def test_shard_shape():
world_size = 2
run_func = partial(run_shard_param_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
@pytest.mark.dist
def test_init_shard_param():
world_size = 2
run_func = partial(run_init_shard_param, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_shard_tensor()
test_shard_shape()
test_init_shard_param()