Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

31 lines
1.2 KiB

import os
from transformers import BertForPreTraining, LlamaForCausalLM
import colossalai.interface.pretrained as pretrained_utils
from colossalai.lazy import LazyInitContext
def test_lazy_from_pretrained():
# test from cached file, unsharded
model = BertForPreTraining.from_pretrained("prajjwal1/bert-tiny")
with LazyInitContext():
deffered_model = BertForPreTraining.from_pretrained("prajjwal1/bert-tiny")
pretrained_path = pretrained_utils.get_pretrained_path(deffered_model)
assert os.path.isfile(pretrained_path)
for p, lazy_p in zip(model.parameters(), deffered_model.parameters()):
assert p.shape == lazy_p.shape
# test from local file, sharded
llama_path = os.environ["LLAMA_PATH"]
model = LlamaForCausalLM.from_pretrained(llama_path)
with LazyInitContext():
deffered_model = LlamaForCausalLM.from_pretrained(llama_path)
pretrained_path = pretrained_utils.get_pretrained_path(deffered_model)
assert os.path.isfile(pretrained_path)
for p, lazy_p in zip(model.parameters(), deffered_model.parameters()):
assert p.shape == lazy_p.shape
if __name__ == "__main__":
test_lazy_from_pretrained()