7c2f79fa98
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/PyCQA/autoflake: v2.2.1 → v2.3.1](https://github.com/PyCQA/autoflake/compare/v2.2.1...v2.3.1) - [github.com/pycqa/isort: 5.12.0 → 5.13.2](https://github.com/pycqa/isort/compare/5.12.0...5.13.2) - [github.com/psf/black-pre-commit-mirror: 23.9.1 → 24.4.2](https://github.com/psf/black-pre-commit-mirror/compare/23.9.1...24.4.2) - [github.com/pre-commit/mirrors-clang-format: v13.0.1 → v18.1.7](https://github.com/pre-commit/mirrors-clang-format/compare/v13.0.1...v18.1.7) - [github.com/pre-commit/pre-commit-hooks: v4.3.0 → v4.6.0](https://github.com/pre-commit/pre-commit-hooks/compare/v4.3.0...v4.6.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> |
||
---|---|---|
.. | ||
fp8/mnist | ||
roberta | ||
README.md |
README.md
Community Examples
Community-driven Examples is an initiative that allows users to share their own examples to the Colossal-AI community, fostering a sense of community and making it easy for others to access and benefit from shared work. The primary goal with community-driven examples is to have a community-maintained collection of diverse and exotic functionalities built on top of the Colossal-AI package.
If a community example doesn't work as expected, you can open an issue and @ the author to report it.
Example | Description | Code Example | Colab | Author |
---|---|---|---|---|
RoBERTa | Adding RoBERTa for SFT and Prompts model training | RoBERTa | - | YY Lin (Moore Threads) |
TransformerEngine FP8 | Adding TransformerEngine with FP8 training | TransformerEngine FP8 | - | Kirthi Shankar Sivamani (NVIDIA) |
... | ... | ... | ... | ... |
Looking for Examples
Welcome to open an issue to share your insights and needs.
How to get involved
To join our community-driven initiative, please visit the Colossal-AI examples, review the provided information, and explore the codebase.
To contribute, create a new issue outlining your proposed feature or enhancement, and our team will review and provide feedback. If you are confident enough you can also submit a PR directly. We look forward to collaborating with you on this exciting project!