mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
615 lines
25 KiB
615 lines
25 KiB
from typing import Any, Callable, Dict, Iterable, List, Tuple |
|
|
|
import torch |
|
|
|
import colossalai |
|
from colossalai.fx._compatibility import is_compatible_with_meta |
|
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE |
|
|
|
AUTOCHUNK_AVAILABLE = CODEGEN_AVAILABLE and is_compatible_with_meta() |
|
|
|
if AUTOCHUNK_AVAILABLE: |
|
from torch.fx.graph import ( |
|
CodeGen, |
|
PythonCode, |
|
_custom_builtins, |
|
_CustomBuiltin, |
|
_format_target, |
|
_is_from_torch, |
|
_Namespace, |
|
_origin_type_map, |
|
inplace_methods, |
|
magic_methods, |
|
) |
|
|
|
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg |
|
|
|
from .search_chunk import SearchChunk |
|
from .utils import delete_free_var_from_last_use, get_logger, get_node_name, get_node_shape |
|
|
|
|
|
def _gen_chunk_slice_dim(chunk_dim: int, chunk_indice_name: str, shape: List) -> str: |
|
""" |
|
Generate chunk slice string, eg. [:, :, chunk_idx_name:chunk_idx_name + chunk_size, :] |
|
|
|
Args: |
|
chunk_dim (int) |
|
chunk_indice_name (str): chunk indice name |
|
shape (List): node shape |
|
|
|
Returns: |
|
new_shape (str): return slice |
|
""" |
|
new_shape = "[" |
|
for idx, _ in enumerate(shape): |
|
if idx == chunk_dim: |
|
new_shape += "%s:%s + chunk_size" % (chunk_indice_name, chunk_indice_name) |
|
else: |
|
new_shape += ":" |
|
new_shape += ", " |
|
new_shape = new_shape[:-2] + "]" |
|
return new_shape |
|
|
|
|
|
def _gen_loop_start(chunk_input: List[Node], chunk_output: List[Node], chunk_output_dim: int, chunk_size=2) -> str: |
|
""" |
|
Generate chunk loop start |
|
|
|
eg. chunk_result = torch.empty([100, 100], dtype=input_node.dtype, device=input_node.device) |
|
chunk_size = 32 |
|
for chunk_idx in range(0, 100, 32): |
|
...... |
|
|
|
Args: |
|
chunk_input (List[Node]): chunk input node |
|
chunk_output (Node): chunk output node |
|
chunk_output_dim (int): chunk output node chunk dim |
|
chunk_size (int): chunk size. Defaults to 2. |
|
|
|
Returns: |
|
context (str): generated str |
|
""" |
|
input_node = chunk_input[0] |
|
|
|
context = "" |
|
for i in range(len(chunk_output)): |
|
shape_str = str(list(get_node_shape(chunk_output[i]))) |
|
if get_node_name(chunk_output[i]) in ["split", "unbind"]: |
|
tensor_str = "torch.empty(%s, dtype=%s.dtype, device=%s.device), " % ( |
|
shape_str, |
|
input_node.name, |
|
input_node.name, |
|
) |
|
tensor_str = tensor_str * len(chunk_output[i].meta["tensor_meta"]) |
|
tensor_str = "[" + tensor_str[:-2] + "]" |
|
context += "%s = %s; " % (chunk_output[i].name, tensor_str) |
|
else: |
|
context += "%s = torch.empty(%s, dtype=%s.dtype, device=%s.device); " % ( |
|
chunk_output[i].name, |
|
shape_str, |
|
input_node.name, |
|
input_node.name, |
|
) |
|
|
|
out_shape = get_node_shape(chunk_output[0]) |
|
chunk_shape = out_shape[chunk_output_dim[0]] |
|
context += "chunk_size = %d\nfor chunk_idx in range(0, %d, chunk_size):\n" % (chunk_size, chunk_shape) |
|
return context |
|
|
|
|
|
def _gen_loop_end( |
|
chunk_inputs: List[Node], |
|
chunk_non_compute_inputs: List[Node], |
|
node_list: List[Node], |
|
chunk_outputs_idx: int, |
|
chunk_outputs_non_tensor: List[Node], |
|
search_chunk: SearchChunk, |
|
) -> str: |
|
""" |
|
Generate chunk loop end |
|
|
|
eg. chunk_result[chunk_idx:chunk_idx + chunk_size] = output_node |
|
output_node = chunk_result; xx = None; xx = None |
|
|
|
Args: |
|
chunk_inputs (List[Node]): chunk input node |
|
chunk_non_compute_inputs (List[Node]): input node without chunk |
|
chunk_outputs (Node): chunk output node |
|
chunk_outputs_dim (int): chunk output node chunk dim |
|
node_list (List) |
|
|
|
Returns: |
|
context (str): generated str |
|
""" |
|
context = "chunk_size = None" |
|
# determine if its the last use for chunk input |
|
for chunk_input in chunk_inputs + chunk_non_compute_inputs: |
|
if all([search_chunk.node_mgr.find_node_idx(user) <= chunk_outputs_idx for user in chunk_input.users.keys()]): |
|
context += "; %s = None" % chunk_input.name |
|
for chunk_output_non_tensor, chunk_output_non_tensor_val in chunk_outputs_non_tensor.items(): |
|
context += "; %s = %s" % (chunk_output_non_tensor.name, chunk_output_non_tensor_val) |
|
context += "\n" |
|
return context |
|
|
|
|
|
def _replace_name(context: str, name_from: str, name_to: str) -> str: |
|
""" |
|
replace node name |
|
""" |
|
patterns = [(" ", " "), (" ", "."), (" ", ","), ("(", ")"), ("(", ","), (" ", ")"), (" ", ""), ("", " ")] |
|
for p in patterns: |
|
source = p[0] + name_from + p[1] |
|
target = p[0] + name_to + p[1] |
|
if source in context: |
|
context = context.replace(source, target) |
|
break |
|
return context |
|
|
|
|
|
def _replace_reshape_size(context: str, node_name: str, reshape_size_dict: Dict) -> str: |
|
""" |
|
replace reshape size, some may have changed due to chunk |
|
""" |
|
if node_name not in reshape_size_dict: |
|
return context |
|
context = context.replace(reshape_size_dict[node_name][0], reshape_size_dict[node_name][1]) |
|
return context |
|
|
|
|
|
def _replace_new_tensor_like_shape( |
|
search_chunk: SearchChunk, |
|
chunk_infos: List[Dict], |
|
region_idx: int, |
|
node_idx: int, |
|
node: Node, |
|
body: List[str], |
|
) -> List[str]: |
|
""" |
|
add chunk slice for new tensor op such as ones like |
|
""" |
|
if get_node_name(node) in ["ones_like", "zeros_like", "empty_like"]: |
|
meta_node = search_chunk.node_mgr.get_node_by_idx(node_idx) |
|
chunk_dim = chunk_infos[region_idx]["node_chunk_dim"][meta_node]["chunk_dim"] |
|
if get_node_shape(meta_node)[chunk_dim] != 1: |
|
source_node = meta_node.args[0].args[0] |
|
if ( |
|
source_node not in chunk_infos[region_idx]["node_chunk_dim"] |
|
or chunk_infos[region_idx]["node_chunk_dim"][source_node]["chunk_dim"] is None |
|
): |
|
chunk_slice = _gen_chunk_slice_dim(chunk_dim, "chunk_idx", get_node_shape(node)) |
|
body[-1] = _replace_name(body[-1], node.args[0].name, node.args[0].name + chunk_slice) |
|
return body |
|
|
|
|
|
def _replace_new_tensor_shape( |
|
search_chunk: SearchChunk, |
|
chunk_infos: List[Dict], |
|
region_idx: int, |
|
node_idx: int, |
|
node: Node, |
|
body: List[str], |
|
) -> List[str]: |
|
""" |
|
add chunk slice for new tensor op such as ones |
|
""" |
|
if get_node_name(node) in ["ones", "zeros", "empty"]: |
|
meta_node = search_chunk.node_mgr.get_node_by_idx(node_idx) |
|
chunk_dim = chunk_infos[region_idx]["node_chunk_dim"][meta_node]["chunk_dim"] |
|
if chunk_dim is None: |
|
return |
|
if get_node_shape(meta_node)[chunk_dim] == 1: |
|
return |
|
origin_shape = str(node.args) |
|
new_shape = list(node.args) |
|
new_shape[chunk_dim] = "min(chunk_size, %d - chunk_idx)" % get_node_shape(meta_node)[chunk_dim] |
|
new_shape = str(new_shape) |
|
new_shape = new_shape.replace("'", "") |
|
body[-1] = _replace_name(body[-1], origin_shape[1:-1], new_shape[1:-1]) |
|
return body |
|
|
|
|
|
def _add_node_slice( |
|
chunk_nodes: List[Node], |
|
region_idx: int, |
|
chunk_nodes_dim: Dict, |
|
node_idx: int, |
|
body: List[str], |
|
node: Node, |
|
) -> List[str]: |
|
""" |
|
add chunk slice for input nodes |
|
""" |
|
for chunk_node_idx, chunk_node in enumerate(chunk_nodes[region_idx]): |
|
# inputs node |
|
if isinstance(chunk_nodes_dim[region_idx][chunk_node_idx], dict): |
|
for idx, dim in chunk_nodes_dim[region_idx][chunk_node_idx].items(): |
|
if idx == node_idx: |
|
chunk_slice = _gen_chunk_slice_dim(dim[0], "chunk_idx", get_node_shape(chunk_node)) |
|
body[-1] = _replace_name(body[-1], chunk_node.name, chunk_node.name + chunk_slice) |
|
# outputs node |
|
else: |
|
if chunk_node.name == node.name or (chunk_node.name in [i.name for i in node.all_input_nodes]): |
|
chunk_slice = _gen_chunk_slice_dim( |
|
chunk_nodes_dim[region_idx][chunk_node_idx], "chunk_idx", get_node_shape(chunk_node) |
|
) |
|
if get_node_name(chunk_node) in ["split", "unbind"]: |
|
split_chunk_slice = "" |
|
for i in range(len(chunk_node.meta["tensor_meta"])): |
|
split_chunk_slice += "%s[%d]%s, " % (chunk_node.name, i, chunk_slice) |
|
split_chunk_slice = split_chunk_slice[:-2] |
|
body[-1] = _replace_name(body[-1], chunk_node.name, split_chunk_slice) |
|
else: |
|
body[-1] = _replace_name(body[-1], chunk_node.name, chunk_node.name + chunk_slice) |
|
return body |
|
|
|
|
|
def emit_code_with_chunk( |
|
body: List[str], |
|
nodes: Iterable[Node], |
|
emit_node_func: Callable, |
|
delete_unused_value_func: Callable, |
|
search_chunk: SearchChunk, |
|
chunk_infos: List, |
|
eval_mem: bool = False, |
|
): |
|
""" |
|
Emit code with chunk according to chunk_infos. |
|
|
|
It will generate a for loop in chunk regions, and |
|
replace inputs and outputs of regions with chunked variables. |
|
|
|
Args: |
|
body: forward code |
|
nodes: graph.nodes |
|
emit_node_func: function to emit node |
|
delete_unused_value_func: function to remove the unused value |
|
search_chunk: the class to search all chunks |
|
chunk_infos: store all information about all chunks. |
|
""" |
|
node_list = list(nodes) |
|
|
|
# chunk region |
|
chunk_starts = [i["region"][0] for i in chunk_infos] |
|
chunk_ends = [i["region"][1] for i in chunk_infos] |
|
|
|
# chunk inputs |
|
chunk_inputs = [i["inputs"] for i in chunk_infos] # input with chunk |
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos] # input without chunk |
|
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos] # input chunk dim |
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [j.name for i in chunk_inputs_non_chunk for j in i] |
|
|
|
# chunk outputs |
|
chunk_outputs = [i["outputs"] for i in chunk_infos] |
|
chunk_outputs_non_tensor = [i["outputs_non_tensor"] for i in chunk_infos] |
|
chunk_outputs_dim = [i["outputs_dim"] for i in chunk_infos] |
|
|
|
node_list = search_chunk.reorder_graph.reorder_node_list(node_list) |
|
node_idx = 0 |
|
region_idx = 0 |
|
within_chunk_region = False |
|
|
|
if eval_mem: |
|
body.append("init_memory = torch.cuda.memory_allocated() / 1024**2\n") |
|
|
|
while node_idx < len(node_list): |
|
node = node_list[node_idx] |
|
|
|
# if is chunk start, generate for loop start |
|
if node_idx in chunk_starts: |
|
within_chunk_region = True |
|
region_idx = chunk_starts.index(node_idx) |
|
body.append( |
|
_gen_loop_start( |
|
chunk_inputs[region_idx], |
|
chunk_outputs[region_idx], |
|
chunk_outputs_dim[region_idx], |
|
chunk_infos[region_idx]["chunk_size"], |
|
) |
|
) |
|
|
|
if within_chunk_region: |
|
emit_node_func(node, body) |
|
# replace input var with chunk var |
|
body = _add_node_slice(chunk_inputs, region_idx, chunk_inputs_dim, node_idx, body, node) |
|
# replace output var with chunk var |
|
body = _add_node_slice(chunk_outputs, region_idx, chunk_outputs_dim, node_idx, body, node) |
|
# new tensor like |
|
body = _replace_new_tensor_like_shape(search_chunk, chunk_infos, region_idx, node_idx, node, body) |
|
# new tensor |
|
body = _replace_new_tensor_shape(search_chunk, chunk_infos, region_idx, node_idx, node, body) |
|
# reassign reshape size |
|
body[-1] = _replace_reshape_size(body[-1], node.name, chunk_infos[region_idx]["reshape_size"]) |
|
body[-1] = " " + body[-1] |
|
delete_unused_value_func(node, body, chunk_inputs_names) |
|
if eval_mem: |
|
body.append( |
|
" if chunk_idx == 0:\n print('%s', torch.cuda.max_memory_allocated() / 1024**2 - init_memory); torch.cuda.reset_peak_memory_stats()\n" |
|
% (node.name) |
|
) |
|
else: |
|
emit_node_func(node, body) |
|
if node_idx not in chunk_inputs: |
|
delete_unused_value_func(node, body, chunk_inputs_names) |
|
if eval_mem: |
|
body.append( |
|
"print('%s', torch.cuda.max_memory_allocated() / 1024**2 - init_memory); torch.cuda.reset_peak_memory_stats()\n" |
|
% (node.name) |
|
) |
|
|
|
# generate chunk region end |
|
if node_idx in chunk_ends: |
|
body.append( |
|
_gen_loop_end( |
|
chunk_inputs[region_idx], |
|
chunk_inputs_non_chunk[region_idx], |
|
node_list, |
|
chunk_ends[region_idx], |
|
chunk_outputs_non_tensor[region_idx], |
|
search_chunk, |
|
) |
|
) |
|
within_chunk_region = False |
|
|
|
node_idx += 1 |
|
|
|
|
|
if AUTOCHUNK_AVAILABLE: |
|
|
|
class AutoChunkCodeGen(CodeGen): |
|
def __init__( |
|
self, |
|
meta_graph, |
|
max_memory: int = None, |
|
print_mem: bool = False, |
|
print_progress: bool = False, |
|
eval_mem: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.eval_mem = eval_mem |
|
# find the chunk regions |
|
self.search_chunk = SearchChunk(meta_graph, max_memory, print_mem, print_progress) |
|
self.chunk_infos = self.search_chunk.search_region() |
|
if print_progress: |
|
get_logger().info("AutoChunk start codegen") |
|
|
|
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace, verbose=None) -> PythonCode: |
|
free_vars: List[str] = [] |
|
body: List[str] = [] |
|
globals_: Dict[str, Any] = {} |
|
wrapped_fns: Dict[str, None] = {} |
|
|
|
# Wrap string in list to pass by reference |
|
maybe_return_annotation: List[str] = [""] |
|
|
|
def add_global(name_hint: str, obj: Any): |
|
"""Add an obj to be tracked as a global. |
|
|
|
We call this for names that reference objects external to the |
|
Graph, like functions or types. |
|
|
|
Returns: the global name that should be used to reference 'obj' in generated source. |
|
""" |
|
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device |
|
# HACK: workaround for how torch custom ops are registered. We |
|
# can't import them like normal modules so they must retain their |
|
# fully qualified name. |
|
return _get_qualified_name(obj) |
|
|
|
# normalize the name hint to get a proper identifier |
|
global_name = namespace.create_name(name_hint, obj) |
|
|
|
if global_name in globals_: |
|
assert globals_[global_name] is obj |
|
return global_name |
|
globals_[global_name] = obj |
|
return global_name |
|
|
|
# set _custom_builtins here so that we needn't import colossalai in forward |
|
_custom_builtins["colossalai"] = _CustomBuiltin("import colossalai", colossalai) |
|
|
|
# Pre-fill the globals table with registered builtins. |
|
for name, (_, obj) in _custom_builtins.items(): |
|
add_global(name, obj) |
|
|
|
def type_repr(o: Any): |
|
if o == (): |
|
# Empty tuple is used for empty tuple type annotation Tuple[()] |
|
return "()" |
|
|
|
typename = _type_repr(o) |
|
|
|
if hasattr(o, "__origin__"): |
|
# This is a generic type, e.g. typing.List[torch.Tensor] |
|
origin_type = _origin_type_map.get(o.__origin__, o.__origin__) |
|
origin_typename = add_global(_type_repr(origin_type), origin_type) |
|
|
|
if hasattr(o, "__args__"): |
|
# Assign global names for each of the inner type variables. |
|
args = [type_repr(arg) for arg in o.__args__] |
|
|
|
if len(args) == 0: |
|
# Bare type, such as `typing.Tuple` with no subscript |
|
# This code-path used in Python < 3.9 |
|
return origin_typename |
|
|
|
return f'{origin_typename}[{",".join(args)}]' |
|
else: |
|
# Bare type, such as `typing.Tuple` with no subscript |
|
# This code-path used in Python 3.9+ |
|
return origin_typename |
|
|
|
# Common case: this is a regular module name like 'foo.bar.baz' |
|
return add_global(typename, o) |
|
|
|
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str: |
|
def _get_repr(arg): |
|
# Handle NamedTuples (if it has `_fields`) via add_global. |
|
if isinstance(arg, tuple) and hasattr(arg, "_fields"): |
|
qualified_name = _get_qualified_name(type(arg)) |
|
global_name = add_global(qualified_name, type(arg)) |
|
return f"{global_name}{repr(tuple(arg))}" |
|
return repr(arg) |
|
|
|
args_s = ", ".join(_get_repr(a) for a in args) |
|
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items()) |
|
if args_s and kwargs_s: |
|
return f"{args_s}, {kwargs_s}" |
|
return args_s or kwargs_s |
|
|
|
# Run through reverse nodes and record the first instance of a use |
|
# of a given node. This represents the *last* use of the node in the |
|
# execution order of the program, which we will use to free unused |
|
# values |
|
node_to_last_use: Dict[Node, Node] = {} |
|
user_to_last_uses: Dict[Node, List[Node]] = {} |
|
|
|
def register_last_uses(n: Node, user: Node): |
|
if n not in node_to_last_use: |
|
node_to_last_use[n] = user |
|
user_to_last_uses.setdefault(user, []).append(n) |
|
|
|
for node in reversed(nodes): |
|
map_arg(node.args, lambda n: register_last_uses(n, node)) |
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node)) |
|
|
|
delete_free_var_from_last_use(user_to_last_uses) |
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func |
|
def delete_unused_values(user: Node, body, to_keep=[]): |
|
""" |
|
Delete values after their last use. This ensures that values that are |
|
not used in the remainder of the code are freed and the memory usage |
|
of the code is optimal. |
|
""" |
|
if user.op == "placeholder": |
|
return |
|
if user.op == "output": |
|
body.append("\n") |
|
return |
|
nodes_to_delete = user_to_last_uses.get(user, []) |
|
nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep] |
|
if len(nodes_to_delete): |
|
to_delete_str = " = ".join([repr(n) for n in nodes_to_delete] + ["None"]) |
|
body.append(f"; {to_delete_str}\n") |
|
else: |
|
body.append("\n") |
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func |
|
def emit_node(node: Node, body): |
|
maybe_type_annotation = "" if node.type is None else f" : {type_repr(node.type)}" |
|
if node.op == "placeholder": |
|
assert isinstance(node.target, str) |
|
maybe_default_arg = "" if not node.args else f" = {repr(node.args[0])}" |
|
free_vars.append(f"{node.target}{maybe_type_annotation}{maybe_default_arg}") |
|
raw_name = node.target.replace("*", "") |
|
if raw_name != repr(node): |
|
body.append(f"{repr(node)} = {raw_name}\n") |
|
return |
|
elif node.op == "call_method": |
|
assert isinstance(node.target, str) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}" |
|
f"({_format_args(node.args[1:], node.kwargs)})" |
|
) |
|
return |
|
elif node.op == "call_function": |
|
assert callable(node.target) |
|
# pretty print operators |
|
if node.target.__module__ == "_operator" and node.target.__name__ in magic_methods: |
|
assert isinstance(node.args, tuple) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = " |
|
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}" |
|
) |
|
return |
|
|
|
# pretty print inplace operators; required for jit.script to work properly |
|
# not currently supported in normal FX graphs, but generated by torchdynamo |
|
if node.target.__module__ == "_operator" and node.target.__name__ in inplace_methods: |
|
body.append( |
|
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; " |
|
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}" |
|
) |
|
return |
|
|
|
qualified_name = _get_qualified_name(node.target) |
|
global_name = add_global(qualified_name, node.target) |
|
# special case for getattr: node.args could be 2-argument or 3-argument |
|
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value |
|
if ( |
|
global_name == "getattr" |
|
and isinstance(node.args, tuple) |
|
and isinstance(node.args[1], str) |
|
and node.args[1].isidentifier() |
|
and len(node.args) == 2 |
|
): |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}" |
|
) |
|
return |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})" |
|
) |
|
if node.meta.get("is_wrapped", False): |
|
wrapped_fns.setdefault(global_name) |
|
return |
|
elif node.op == "call_module": |
|
assert isinstance(node.target, str) |
|
body.append( |
|
f"{repr(node)}{maybe_type_annotation} = " |
|
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})" |
|
) |
|
return |
|
elif node.op == "get_attr": |
|
assert isinstance(node.target, str) |
|
body.append(f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}") |
|
return |
|
elif node.op == "output": |
|
if node.type is not None: |
|
maybe_return_annotation[0] = f" -> {type_repr(node.type)}" |
|
body.append(self.generate_output(node.args[0])) |
|
return |
|
raise NotImplementedError(f"node: {node.op} {node.target}") |
|
|
|
# Modified for activation checkpointing |
|
ckpt_func = [] |
|
|
|
# if any node has a list of labels for activation_checkpoint, we |
|
# will use nested type of activation checkpoint codegen |
|
emit_code_with_chunk( |
|
body, nodes, emit_node, delete_unused_values, self.search_chunk, self.chunk_infos, self.eval_mem |
|
) |
|
|
|
if len(body) == 0: |
|
# If the Graph has no non-placeholder nodes, no lines for the body |
|
# have been emitted. To continue to have valid Python code, emit a |
|
# single pass statement |
|
body.append("pass\n") |
|
|
|
if len(wrapped_fns) > 0: |
|
wrap_name = add_global("wrap", torch.fx.wrap) |
|
wrap_stmts = "\n".join([f'{wrap_name}("{name}")' for name in wrapped_fns]) |
|
else: |
|
wrap_stmts = "" |
|
|
|
if self._body_transformer: |
|
body = self._body_transformer(body) |
|
|
|
for name, value in self.additional_globals(): |
|
add_global(name, value) |
|
|
|
# as we need colossalai.utils.checkpoint, we need to import colossalai |
|
# in forward function |
|
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0]) |
|
prologue = "".join(ckpt_func) + prologue |
|
prologue = prologue |
|
|
|
code = "".join(body) |
|
code = "\n".join(" " + line for line in code.split("\n")) |
|
fn_code = f""" |
|
{wrap_stmts} |
|
|
|
{prologue} |
|
{code}""" |
|
# print(fn_code) |
|
return PythonCode(fn_code, globals_)
|
|
|