Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

320 lines
9.2 KiB

#!/usr/bin/env python
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
__all__ = ["BaseAccelerator"]
class BaseAccelerator(ABC):
support_set_device: bool = True
def __init__(self, name: str, communication_backend: str, is_synchronous: bool) -> None:
self._name = name
self._communication_backend = communication_backend
self._is_synchronous = is_synchronous
# =======================
# immutable attributes
# =======================
@property
def name(self) -> str:
"""
Return the name of the accelerator.
"""
return self._name
@property
def communication_backend(self) -> str:
"""
Return the name of the backend communication library.
"""
return self._communication_backend
@property
def is_synchronous(self) -> bool:
"""
Return whether the accelerator is a synchronous device.
"""
return self._is_synchronous
def __repr__(self) -> str:
cls_name = self.__class__.__name__
return f"{cls_name}(name={self._name}, communication_backend={self._communication_backend}, is_synchronous={self._is_synchronous})"
# =======================
# device APIs
# =======================
@abstractmethod
def get_version(self) -> str:
"""
Return the version of the accelerator which torch is built against.
"""
@abstractmethod
def get_current_device(self) -> torch.device:
"""
Return the current device.
"""
@abstractmethod
def current_device(self) -> int:
"""
Return the current device index.
"""
@abstractmethod
def set_device(self, device: Optional[Union[torch.device, int]] = None) -> None:
"""
Bind the current process to a device.
"""
@abstractmethod
def get_device_name(self, device: Union[torch.device, int]) -> str:
"""
Return the name of the device.
"""
@abstractmethod
def synchronize(self, device: Union[torch.device, int] = None):
"""
Synchronize the current process.
"""
@abstractmethod
def is_available(self):
"""
Check if the accelerator is available.
"""
@abstractmethod
def device_count(self):
"""
Return the number of devices on the machine.
"""
def set_to_device(self, models: Any) -> Any:
"""
Send model to device.
:param models: nn.module or a list of module
"""
if isinstance(models, list) and len(models) > 1:
ret = []
for model in models:
ret.append(model.to(self.get_current_device()))
return ret
elif isinstance(models, list):
return models[0].to(self.get_current_device())
else:
return models.to(self.get_current_device())
@abstractmethod
def get_device_capability(self, device=None) -> Tuple[int, int]:
"""
Gets the capability of a device.
"""
@abstractmethod
def get_device_name(self, device=None) -> str:
"""
Gets the name of a device.
"""
@abstractmethod
def get_device_properties(self, device):
"""
Gets the properties of a device.
"""
@abstractmethod
def utilization(self, device=None) -> int:
"""
Returns the percent of time over the past sample period during which one or more kernels was executing on the device as given by nvidia-smi or npu-smi, etc.
"""
# =======================
# random number generator APIs
# =======================
@abstractmethod
def get_rng_state(self, device="cuda") -> torch.Tensor:
"""
Returns the random number generator state of the specified device as a ByteTensor.
"""
@abstractmethod
def get_rng_state_all(self) -> List[torch.Tensor]:
"""
Returns a list of ByteTensor representing the random number states of all devices.
"""
@abstractmethod
def set_rng_state(self, new_state: torch.ByteTensor, device: str = "cuda") -> None:
"""
Sets the random number generator state of the specified device.
"""
@abstractmethod
def set_rng_state_all(self, new_states: List[torch.ByteTensor]) -> None:
"""
Sets the random number generator state of all devices.
"""
@abstractmethod
def manual_seed(self, seed: int) -> None:
"""
Sets the seed for generating random numbers for the current device.
"""
@abstractmethod
def manual_seed_all(self, seed: int) -> None:
"""
Sets the seed for generating random numbers on all devices.
"""
@abstractmethod
def seed(self) -> None:
"""
Sets the seed for generating random numbers to a random number for the current device.
"""
@abstractmethod
def seed_all(self) -> None:
"""
Sets the seed for generating random numbers to a random number on all devices.
"""
@abstractmethod
def initial_seed(self) -> int:
"""
Returns the current random seed of the current device.
"""
# =======================
# memory management APIs
# =======================
@abstractmethod
def empty_cache(self) -> None:
"""
Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other device application and visible in nvidia-smi.
"""
@abstractmethod
def memory_stats(self, device=None) -> Dict[str, Any]:
"""
Returns a dictionary of CUDA memory allocator statistics for a given device.
"""
@abstractmethod
def memory_summary(self, device=None, abbreviated=False) -> str:
"""
Returns a human-readable printout of the current memory allocator statistics for a given device.
"""
@abstractmethod
def memory_snapshot(self):
"""
Returns a snapshot of the CUDA memory allocator state across all devices.
"""
@abstractmethod
def memory_allocated(self, device=None) -> int:
"""
Returns the current device memory occupied by tensors in bytes for a given device.
"""
@abstractmethod
def max_memory_allocated(self, device=None) -> int:
"""
Returns the maximum device memory occupied by tensors in bytes for a given device.
"""
@abstractmethod
def reset_max_memory_allocated(self, device=None) -> None:
"""
Resets the starting point in tracking maximum device memory occupied by tensors for a given device.
"""
@abstractmethod
def reset_max_memory_cached(self, device=None) -> None:
"""
Resets the starting point in tracking maximum device memory managed by the caching allocator for a given device.
"""
@abstractmethod
def memory_reserved(self, device=None) -> int:
"""
Returns the current device memory managed by the caching allocator in bytes for a given device.
"""
@abstractmethod
def max_memory_reserved(self, device=None) -> int:
"""
Returns the maximum device memory managed by the caching allocator in bytes for a given device.
"""
@abstractmethod
def set_per_process_memory_fraction(self, fraction: float, device=None) -> None:
"""
Set memory fraction for a process.
"""
@abstractmethod
def reset_peak_memory_stats(self, device=None) -> None:
"""
Resets the "peak" stats tracked by the device memory allocator.
"""
# =======================
# streams and events APIs
# =======================
@abstractmethod
def Stream(self, device=None, priority=0, **kwargs):
"""
A device stream is a linear sequence of execution that belongs to a specific device, independent from other streams. See cuda-semantics for details.
"""
@abstractmethod
def Event(self, enable_timing: bool = False, blocking: bool = False, interprocess: bool = False):
"""
device events are synchronization markers that can be used to monitor the device's progress, to accurately measure timing, and to synchronize CUDA streams.
"""
@abstractmethod
def current_stream(self, device=None):
"""
Returns the currently selected Stream for a given device.
"""
@abstractmethod
def default_stream(self, device=None):
"""
Returns the default Stream for a given device.
"""
@abstractmethod
def set_stream(self, stream_):
"""
Sets the current stream.This is a wrapper API to set the stream.
"""
@abstractmethod
def stream(self, stream_):
"""
Wrapper around the Context-manager StreamContext that selects a given stream.
"""
# =======================
# amp APIs
# =======================
@abstractmethod
def autocast(
self, enabled: bool = True, dtype: torch.dtype = torch.float16, cache_enabled: bool = True
) -> Callable:
"""
Return autocast function
"""