mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
320 lines
9.2 KiB
320 lines
9.2 KiB
#!/usr/bin/env python |
|
|
|
from abc import ABC, abstractmethod |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
__all__ = ["BaseAccelerator"] |
|
|
|
|
|
class BaseAccelerator(ABC): |
|
support_set_device: bool = True |
|
|
|
def __init__(self, name: str, communication_backend: str, is_synchronous: bool) -> None: |
|
self._name = name |
|
self._communication_backend = communication_backend |
|
self._is_synchronous = is_synchronous |
|
|
|
# ======================= |
|
# immutable attributes |
|
# ======================= |
|
|
|
@property |
|
def name(self) -> str: |
|
""" |
|
Return the name of the accelerator. |
|
""" |
|
return self._name |
|
|
|
@property |
|
def communication_backend(self) -> str: |
|
""" |
|
Return the name of the backend communication library. |
|
""" |
|
return self._communication_backend |
|
|
|
@property |
|
def is_synchronous(self) -> bool: |
|
""" |
|
Return whether the accelerator is a synchronous device. |
|
""" |
|
return self._is_synchronous |
|
|
|
def __repr__(self) -> str: |
|
cls_name = self.__class__.__name__ |
|
return f"{cls_name}(name={self._name}, communication_backend={self._communication_backend}, is_synchronous={self._is_synchronous})" |
|
|
|
# ======================= |
|
# device APIs |
|
# ======================= |
|
@abstractmethod |
|
def get_version(self) -> str: |
|
""" |
|
Return the version of the accelerator which torch is built against. |
|
""" |
|
|
|
@abstractmethod |
|
def get_current_device(self) -> torch.device: |
|
""" |
|
Return the current device. |
|
""" |
|
|
|
@abstractmethod |
|
def current_device(self) -> int: |
|
""" |
|
Return the current device index. |
|
""" |
|
|
|
@abstractmethod |
|
def set_device(self, device: Optional[Union[torch.device, int]] = None) -> None: |
|
""" |
|
Bind the current process to a device. |
|
""" |
|
|
|
@abstractmethod |
|
def get_device_name(self, device: Union[torch.device, int]) -> str: |
|
""" |
|
Return the name of the device. |
|
""" |
|
|
|
@abstractmethod |
|
def synchronize(self, device: Union[torch.device, int] = None): |
|
""" |
|
Synchronize the current process. |
|
""" |
|
|
|
@abstractmethod |
|
def is_available(self): |
|
""" |
|
Check if the accelerator is available. |
|
""" |
|
|
|
@abstractmethod |
|
def device_count(self): |
|
""" |
|
Return the number of devices on the machine. |
|
""" |
|
|
|
def set_to_device(self, models: Any) -> Any: |
|
""" |
|
Send model to device. |
|
|
|
:param models: nn.module or a list of module |
|
""" |
|
if isinstance(models, list) and len(models) > 1: |
|
ret = [] |
|
for model in models: |
|
ret.append(model.to(self.get_current_device())) |
|
return ret |
|
elif isinstance(models, list): |
|
return models[0].to(self.get_current_device()) |
|
else: |
|
return models.to(self.get_current_device()) |
|
|
|
@abstractmethod |
|
def get_device_capability(self, device=None) -> Tuple[int, int]: |
|
""" |
|
Gets the capability of a device. |
|
""" |
|
|
|
@abstractmethod |
|
def get_device_name(self, device=None) -> str: |
|
""" |
|
Gets the name of a device. |
|
""" |
|
|
|
@abstractmethod |
|
def get_device_properties(self, device): |
|
""" |
|
Gets the properties of a device. |
|
""" |
|
|
|
@abstractmethod |
|
def utilization(self, device=None) -> int: |
|
""" |
|
Returns the percent of time over the past sample period during which one or more kernels was executing on the device as given by nvidia-smi or npu-smi, etc. |
|
""" |
|
|
|
# ======================= |
|
# random number generator APIs |
|
# ======================= |
|
@abstractmethod |
|
def get_rng_state(self, device="cuda") -> torch.Tensor: |
|
""" |
|
Returns the random number generator state of the specified device as a ByteTensor. |
|
""" |
|
|
|
@abstractmethod |
|
def get_rng_state_all(self) -> List[torch.Tensor]: |
|
""" |
|
Returns a list of ByteTensor representing the random number states of all devices. |
|
""" |
|
|
|
@abstractmethod |
|
def set_rng_state(self, new_state: torch.ByteTensor, device: str = "cuda") -> None: |
|
""" |
|
Sets the random number generator state of the specified device. |
|
""" |
|
|
|
@abstractmethod |
|
def set_rng_state_all(self, new_states: List[torch.ByteTensor]) -> None: |
|
""" |
|
Sets the random number generator state of all devices. |
|
""" |
|
|
|
@abstractmethod |
|
def manual_seed(self, seed: int) -> None: |
|
""" |
|
Sets the seed for generating random numbers for the current device. |
|
""" |
|
|
|
@abstractmethod |
|
def manual_seed_all(self, seed: int) -> None: |
|
""" |
|
Sets the seed for generating random numbers on all devices. |
|
""" |
|
|
|
@abstractmethod |
|
def seed(self) -> None: |
|
""" |
|
Sets the seed for generating random numbers to a random number for the current device. |
|
""" |
|
|
|
@abstractmethod |
|
def seed_all(self) -> None: |
|
""" |
|
Sets the seed for generating random numbers to a random number on all devices. |
|
""" |
|
|
|
@abstractmethod |
|
def initial_seed(self) -> int: |
|
""" |
|
Returns the current random seed of the current device. |
|
""" |
|
|
|
# ======================= |
|
# memory management APIs |
|
# ======================= |
|
@abstractmethod |
|
def empty_cache(self) -> None: |
|
""" |
|
Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other device application and visible in nvidia-smi. |
|
""" |
|
|
|
@abstractmethod |
|
def memory_stats(self, device=None) -> Dict[str, Any]: |
|
""" |
|
Returns a dictionary of CUDA memory allocator statistics for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def memory_summary(self, device=None, abbreviated=False) -> str: |
|
""" |
|
Returns a human-readable printout of the current memory allocator statistics for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def memory_snapshot(self): |
|
""" |
|
Returns a snapshot of the CUDA memory allocator state across all devices. |
|
""" |
|
|
|
@abstractmethod |
|
def memory_allocated(self, device=None) -> int: |
|
""" |
|
Returns the current device memory occupied by tensors in bytes for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def max_memory_allocated(self, device=None) -> int: |
|
""" |
|
Returns the maximum device memory occupied by tensors in bytes for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def reset_max_memory_allocated(self, device=None) -> None: |
|
""" |
|
Resets the starting point in tracking maximum device memory occupied by tensors for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def reset_max_memory_cached(self, device=None) -> None: |
|
""" |
|
Resets the starting point in tracking maximum device memory managed by the caching allocator for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def memory_reserved(self, device=None) -> int: |
|
""" |
|
Returns the current device memory managed by the caching allocator in bytes for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def max_memory_reserved(self, device=None) -> int: |
|
""" |
|
Returns the maximum device memory managed by the caching allocator in bytes for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def set_per_process_memory_fraction(self, fraction: float, device=None) -> None: |
|
""" |
|
Set memory fraction for a process. |
|
""" |
|
|
|
@abstractmethod |
|
def reset_peak_memory_stats(self, device=None) -> None: |
|
""" |
|
Resets the "peak" stats tracked by the device memory allocator. |
|
""" |
|
|
|
# ======================= |
|
# streams and events APIs |
|
# ======================= |
|
|
|
@abstractmethod |
|
def Stream(self, device=None, priority=0, **kwargs): |
|
""" |
|
A device stream is a linear sequence of execution that belongs to a specific device, independent from other streams. See cuda-semantics for details. |
|
""" |
|
|
|
@abstractmethod |
|
def Event(self, enable_timing: bool = False, blocking: bool = False, interprocess: bool = False): |
|
""" |
|
device events are synchronization markers that can be used to monitor the device's progress, to accurately measure timing, and to synchronize CUDA streams. |
|
""" |
|
|
|
@abstractmethod |
|
def current_stream(self, device=None): |
|
""" |
|
Returns the currently selected Stream for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def default_stream(self, device=None): |
|
""" |
|
Returns the default Stream for a given device. |
|
""" |
|
|
|
@abstractmethod |
|
def set_stream(self, stream_): |
|
""" |
|
Sets the current stream.This is a wrapper API to set the stream. |
|
""" |
|
|
|
@abstractmethod |
|
def stream(self, stream_): |
|
""" |
|
Wrapper around the Context-manager StreamContext that selects a given stream. |
|
""" |
|
|
|
# ======================= |
|
# amp APIs |
|
# ======================= |
|
@abstractmethod |
|
def autocast( |
|
self, enabled: bool = True, dtype: torch.dtype = torch.float16, cache_enabled: bool = True |
|
) -> Callable: |
|
""" |
|
Return autocast function |
|
"""
|
|
|