Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

76 lines
2.6 KiB

import pytest
import torch
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
from colossalai.testing import rerun_if_address_is_in_use, spawn
def check_apply(rank, world_size, port):
disable_existing_loggers()
launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
entire_shape = torch.Size((4, 2))
shape_consistency_manager = ShapeConsistencyManager()
dim_partition_source = {0: [0]}
dim_partition_target = {1: [0]}
# DistSpec:
# shard_sequence: S0,R
# device_mesh_shape: (2, 2)
sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source)
# DistSpec:
# shard_sequence: R,S0
# device_mesh_shape: (2, 2)
sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target)
if rank in (0, 1):
sharded_tensor_0 = torch.zeros(2, 1)
sharded_tensor_1 = torch.ones(2, 1)
# tensor([[0., 1.],
# [0., 1.]])
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
if rank in (2, 3):
sharded_tensor_0 = torch.ones(2, 1) * 2
sharded_tensor_1 = torch.ones(2, 1) * 3
# tensor([[2., 3.],
# [2., 3.]])
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
if rank in (0, 1):
# tensor([[0.],
# [0.],
# [2.],
# [2.]])
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda()
if rank in (2, 3):
# tensor([[1.],
# [1.],
# [3.],
# [3.]])
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda()
tensor_to_comm.sharding_spec = sharding_spec_source
tensor_to_comm = shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target)
assert tensor_to_comm.equal(tensor_to_check)
assert str(tensor_to_comm.sharding_spec.sharding_sequence) == str(sharding_spec_target.sharding_sequence)
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_apply():
world_size = 4
spawn(check_apply, world_size)
if __name__ == "__main__":
test_apply()