Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

39 lines
1.0 KiB

import warnings
import pytest
import torch
try:
from colossalai.kernel.op_builder.smoothquant import SmoothquantBuilder
smoothquant_cuda = SmoothquantBuilder().load()
HAS_SMOOTHQUANT_CUDA = True
except:
warnings.warn("CUDA smoothquant linear is not installed")
HAS_SMOOTHQUANT_CUDA = False
@pytest.mark.skipif(
not HAS_SMOOTHQUANT_CUDA,
reason="smoothquant linear not installed properly",
)
def test_linear():
a = torch.randint(-127, 127, (128, 512), dtype=torch.int8, device="cuda")
b = torch.randint(-127, 127, (512, 256), dtype=torch.int8, device="cuda")
c = torch.rand(256, dtype=torch.float, device="cuda")
alpha = 1 / 127
beta = 1.0
torch_out = torch.mm(a.to(torch.float) * alpha, b.to(torch.float)) + c
silu = torch.nn.SiLU()
torch_out = silu(torch_out)
b = b.transpose(0, 1).contiguous()
cuda_out = smoothquant_cuda.linear_silu_a8_w8_bfp32_ofp32(a, b, c, alpha, beta)
assert torch.allclose(torch_out, cuda_out, rtol=1e-02, atol=1e-02)
if __name__ == "__main__":
test_linear()