mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
39 lines
1.0 KiB
39 lines
1.0 KiB
import warnings |
|
|
|
import pytest |
|
import torch |
|
|
|
try: |
|
from colossalai.kernel.op_builder.smoothquant import SmoothquantBuilder |
|
|
|
smoothquant_cuda = SmoothquantBuilder().load() |
|
HAS_SMOOTHQUANT_CUDA = True |
|
except: |
|
warnings.warn("CUDA smoothquant linear is not installed") |
|
HAS_SMOOTHQUANT_CUDA = False |
|
|
|
|
|
@pytest.mark.skipif( |
|
not HAS_SMOOTHQUANT_CUDA, |
|
reason="smoothquant linear not installed properly", |
|
) |
|
def test_linear(): |
|
a = torch.randint(-127, 127, (128, 512), dtype=torch.int8, device="cuda") |
|
b = torch.randint(-127, 127, (512, 256), dtype=torch.int8, device="cuda") |
|
c = torch.rand(256, dtype=torch.float, device="cuda") |
|
|
|
alpha = 1 / 127 |
|
beta = 1.0 |
|
torch_out = torch.mm(a.to(torch.float) * alpha, b.to(torch.float)) + c |
|
|
|
silu = torch.nn.SiLU() |
|
torch_out = silu(torch_out) |
|
|
|
b = b.transpose(0, 1).contiguous() |
|
cuda_out = smoothquant_cuda.linear_silu_a8_w8_bfp32_ofp32(a, b, c, alpha, beta) |
|
|
|
assert torch.allclose(torch_out, cuda_out, rtol=1e-02, atol=1e-02) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_linear()
|
|
|