Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

84 lines
2.5 KiB

import warnings
import pytest
import torch
from packaging import version
try:
from colossalai.kernel.op_builder.smoothquant import SmoothquantBuilder
smoothquant_cuda = SmoothquantBuilder().load()
HAS_SMOOTHQUANT_CUDA = True
except:
warnings.warn("CUDA smoothquant linear is not installed")
HAS_SMOOTHQUANT_CUDA = False
try:
from colossalai.inference.quant.smoothquant.models import LlamaSmoothquantMLP
HAS_TORCH_INT = True
except:
HAS_TORCH_INT = False
warnings.warn("Please install torch_int from https://github.com/Guangxuan-Xiao/torch-int")
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
def torch_llama_mlp(gate_proj, up_proj, down_proj, x):
gate_out = torch.mm(x, gate_proj)
silu = torch.nn.SiLU()
gate_out = silu(gate_out)
up_out = torch.mm(x, up_proj)
o_out = gate_out * up_out
max_up = torch.max(torch.abs(o_out))
min_up = torch.min(torch.abs(o_out))
torch_out = torch.mm(o_out, down_proj)
return (torch_out, max_up, min_up)
@pytest.mark.skipif(
not CUDA_SUPPORT or not HAS_SMOOTHQUANT_CUDA or not HAS_TORCH_INT,
reason="smoothquant linear not installed properly or not install torch_int",
)
def test_llama_mlp():
hidden_size = 256
intermediate_size = 512
smooth_mlp = LlamaSmoothquantMLP(intermediate_size, hidden_size)
smooth_mlp.gate_proj.weight = torch.ones((intermediate_size, hidden_size), dtype=torch.int8, device="cuda")
smooth_mlp.up_proj.weight = torch.randint(
-10, 10, (intermediate_size, hidden_size), dtype=torch.int8, device="cuda"
)
smooth_mlp.down_proj.weight = torch.randint(
-10, 10, (hidden_size, intermediate_size), dtype=torch.int8, device="cuda"
)
x = torch.ones((1, 256), dtype=torch.int8, device="cuda")
torch_out, max_inter, min_inter = torch_llama_mlp(
smooth_mlp.gate_proj.weight.transpose(0, 1).to(torch.float) / hidden_size,
smooth_mlp.up_proj.weight.transpose(0, 1).to(torch.float) / 127,
smooth_mlp.down_proj.weight.transpose(0, 1).to(torch.float) / 127,
x.to(torch.float),
)
smooth_mlp.down_proj_input_scale = torch.tensor(max_inter.item() / 127)
smooth_mlp.gate_proj.a = torch.tensor(1 / hidden_size)
smooth_mlp.up_proj.a = torch.tensor(1 / 127)
smooth_mlp.down_proj.a = torch.tensor(1 / 127 * (max_inter.item() / 127))
smooth_out = smooth_mlp(x)
assert torch.allclose(torch_out, smooth_out, rtol=1e-02, atol=1e-01)
if __name__ == "__main__":
test_llama_mlp()