mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
7.1 KiB
225 lines
7.1 KiB
import pytest |
|
import torch |
|
|
|
import colossalai |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.shardformer.layer.utils import Randomizer |
|
from colossalai.tensor.d_tensor.api import clear_layout_converter |
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn |
|
from tests.kit.model_zoo import model_zoo |
|
from tests.test_shardformer.test_model._utils import ( |
|
build_model_from_hybrid_plugin, |
|
check_all_grad_tensors, |
|
check_loss, |
|
check_output_hidden_state, |
|
check_weight, |
|
get_grad_tensors_for_check, |
|
run_forward_backward_with_hybrid_plugin, |
|
) |
|
|
|
|
|
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config): |
|
# check forward |
|
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin( |
|
model_fn, loss_fn, test_config |
|
) |
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin( |
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster |
|
) |
|
|
|
stage_manager = booster.plugin.stage_manager |
|
tp_group = booster.plugin.tp_group |
|
|
|
# unwarp the model |
|
if org_model.__class__.__name__ == "WhisperForConditionalGeneration": |
|
whisper = org_model.model |
|
sharded_whisper = sharded_model.unwrap().model |
|
else: |
|
whisper = org_model |
|
sharded_whisper = sharded_model.unwrap() |
|
|
|
# check grad |
|
if org_model.__class__.__name__ == "WhisperForAudioClassification": |
|
col_layer_for_check = ["encoder.layers[0].self_attn.q_proj"] |
|
row_layer_for_check = ["encoder.layers[0].self_attn.out_proj"] |
|
else: |
|
col_layer_for_check = [ |
|
"encoder.layers[0].self_attn.q_proj", |
|
# 'decoder.layers[0].self_attn.q_proj' |
|
] |
|
row_layer_for_check = [ |
|
"encoder.layers[0].self_attn.out_proj", |
|
#'decoder.layers[0].self_attn.out_proj' |
|
] |
|
|
|
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step. |
|
grads_to_check = {} |
|
if test_config["precision"] == "fp32": |
|
atol, rtol = 2e-4, 2e-4 |
|
else: |
|
atol, rtol = 5e-3, 5e-3 |
|
|
|
if stage_manager is None or stage_manager.is_first_stage(): |
|
row_layer_grads = get_grad_tensors_for_check( |
|
whisper, sharded_whisper, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1 |
|
) |
|
col_layer_grads = get_grad_tensors_for_check( |
|
whisper, sharded_whisper, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0 |
|
) |
|
grads_to_check.update(col_layer_grads) |
|
grads_to_check.update(row_layer_grads) |
|
|
|
# optimizer executes step |
|
org_optimizer.step() |
|
sharded_optimizer.step() |
|
|
|
# check last hidden state & loss |
|
if stage_manager is None or stage_manager.is_last_stage(): |
|
if test_config["precision"] == "fp32": |
|
atol, rtol = 2e-4, 2e-4 |
|
else: |
|
atol, rtol = 5e-3, 5e-3 |
|
|
|
if org_model.__class__.__name__ == "WhisperModel": |
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol) |
|
|
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol) |
|
|
|
# check weights |
|
if test_config["precision"] == "fp32": |
|
atol, rtol = 1e-3, 1e-3 |
|
else: |
|
atol, rtol = 5e-3, 5e-3 |
|
if stage_manager is None or stage_manager.is_first_stage(): |
|
check_weight( |
|
whisper, sharded_whisper, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False |
|
) |
|
check_weight( |
|
whisper, sharded_whisper, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False |
|
) |
|
|
|
# check grads |
|
check_all_grad_tensors(grads_to_check) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
# TODO fix WhisperForConditionalGeneration enable jit fused operato |
|
# TODO(jianghai) fix fp16 |
|
@parameterize( |
|
"test_config", |
|
[ |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 2, |
|
"num_microbatches": 2, |
|
"enable_metadata_cache": False, |
|
"enable_all_optimization": True, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
"initial_scale": 1, |
|
}, |
|
{ |
|
"tp_size": 1, |
|
"pp_size": 2, |
|
"num_microbatches": 4, |
|
"enable_metadata_cache": False, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
"initial_scale": 1, |
|
}, |
|
{ |
|
"tp_size": 4, |
|
"pp_size": 1, |
|
"enable_all_optimization": True, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
}, |
|
{ |
|
"tp_size": 1, |
|
"pp_size": 4, |
|
"num_microbatches": 4, |
|
"enable_metadata_cache": False, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
}, |
|
# whisper is not supported fp16 for now. |
|
], |
|
) |
|
def run_whisper_test(test_config): |
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_whisper") |
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): |
|
if test_config["pp_size"] > 2 and name == "transformers_whisper_for_audio_classification": |
|
continue |
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) |
|
|
|
clear_layout_converter() |
|
Randomizer.reset_index() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@parameterize( |
|
"test_config", |
|
[ |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 2, |
|
"num_microbatches": 4, |
|
"enable_metadata_cache": False, |
|
"enable_all_optimization": False, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
"initial_scale": 1, |
|
}, |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 2, |
|
"num_microbatches": 2, |
|
"enable_metadata_cache": False, |
|
"enable_all_optimization": False, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
"initial_scale": 1, |
|
}, |
|
], |
|
) |
|
def run_whisper_3d_test(test_config): |
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_whisper") |
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): |
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) |
|
|
|
clear_layout_converter() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def check_whisper(rank, world_size, port): |
|
disable_existing_loggers() |
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
run_whisper_test() |
|
|
|
|
|
def check_whisper_3d(rank, world_size, port): |
|
disable_existing_loggers() |
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
run_whisper_3d_test() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def test_whisper(): |
|
spawn(check_whisper, 4) |
|
|
|
|
|
@pytest.mark.largedist |
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def test_whisper_3d(): |
|
spawn(check_whisper_3d, 8) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_whisper() |
|
test_whisper_3d()
|
|
|