Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

281 lines
7.5 KiB

import pytest
import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import (
build_model_from_hybrid_plugin,
check_all_grad_tensors,
check_loss,
check_output_hidden_state,
check_weight,
get_grad_tensors_for_check,
run_forward_backward_with_hybrid_plugin,
unwrap_model,
)
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
model_fn, loss_fn, test_config
)
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model,
sharded_model,
sharded_optimizer,
data_gen_fn,
output_transform_fn,
criterion,
booster,
)
stage_manager = booster.plugin.stage_manager
tp_group = booster.plugin.tp_group
# unwrap model
gptj = unwrap_model(org_model, "GPTJModel", "transformer")
sharded_gptj = unwrap_model(sharded_model, "GPTJModel", "transformer")
col_layer_for_check = ["h[0].attn.k_proj"]
row_layer_for_check = ["h[0].mlp.fc_out"] # use dim=0 for wte get_grad_tensors_for_check
# Save gradient tensors for comparison between the original model and the sharded model.
grads_to_check = {}
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config["precision"] == "fp32":
atol, rtol = 1e-4, 1e-3
else:
atol, rtol = 5e-3, 5e-3
col_layer_grads = get_grad_tensors_for_check(
gptj,
sharded_gptj,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=0,
verbose=False,
)
row_layer_grads = get_grad_tensors_for_check(
gptj,
sharded_gptj,
row_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False,
)
grads_to_check.update(col_layer_grads)
grads_to_check.update(row_layer_grads)
# optimizer executes step
org_optimizer.step()
sharded_optimizer.step()
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage():
if test_config["precision"] == "fp32":
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if org_model.__class__.__name__ == "GPTJModel":
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
# check weights
if stage_manager is None or stage_manager.is_first_stage():
if test_config["precision"] == "fp32":
atol, rtol = 5e-3, 1e-3
else:
atol, rtol = 5e-3, 5e-3
check_weight(
gptj,
sharded_gptj,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=0,
verbose=False,
)
# check grads
check_all_grad_tensors(grads_to_check)
Randomizer.reset_index()
torch.cuda.empty_cache()
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": True,
#'use_lazy_init': True, GPTJ currently do not support lazy init; model training has issue even without sharding
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": True,
#'use_lazy_init': True,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 1,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
#'use_lazy_init': True,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 1,
"enable_all_optimization": True,
#'use_lazy_init': True,
"zero_stage": 2,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 2,
"enable_all_optimization": True,
#'use_lazy_init': True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
],
)
@clear_cache_before_run()
def run_gptj_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_gptj")
for name, (
model_fn,
data_gen_fn,
output_transform_fn,
loss_fn,
_,
) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
torch.cuda.empty_cache()
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp16",
"zero_stage": 1,
"initial_scale": 1,
},
],
)
@clear_cache_before_run()
def run_gptj_3d_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_gptj")
for name, (
model_fn,
data_gen_fn,
output_transform_fn,
loss_fn,
_,
) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
torch.cuda.empty_cache()
def check_gptj(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
run_gptj_test()
def check_gptj_3d(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
run_gptj_3d_test()
@pytest.mark.skip("TODO check_gptj has something wrong.")
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_gptj():
spawn(check_gptj, 4)
@pytest.mark.largedist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_gptj_3d():
spawn(check_gptj_3d, 8)
if __name__ == "__main__":
test_gptj()
test_gptj_3d()