mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
281 lines
7.5 KiB
281 lines
7.5 KiB
import pytest |
|
import torch |
|
|
|
import colossalai |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.shardformer.layer.utils import Randomizer |
|
from colossalai.tensor.d_tensor.api import clear_layout_converter |
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn |
|
from tests.kit.model_zoo import model_zoo |
|
from tests.test_shardformer.test_model._utils import ( |
|
build_model_from_hybrid_plugin, |
|
check_all_grad_tensors, |
|
check_loss, |
|
check_output_hidden_state, |
|
check_weight, |
|
get_grad_tensors_for_check, |
|
run_forward_backward_with_hybrid_plugin, |
|
unwrap_model, |
|
) |
|
|
|
|
|
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config): |
|
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin( |
|
model_fn, loss_fn, test_config |
|
) |
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin( |
|
org_model, |
|
sharded_model, |
|
sharded_optimizer, |
|
data_gen_fn, |
|
output_transform_fn, |
|
criterion, |
|
booster, |
|
) |
|
|
|
stage_manager = booster.plugin.stage_manager |
|
tp_group = booster.plugin.tp_group |
|
|
|
# unwrap model |
|
gptj = unwrap_model(org_model, "GPTJModel", "transformer") |
|
sharded_gptj = unwrap_model(sharded_model, "GPTJModel", "transformer") |
|
|
|
col_layer_for_check = ["h[0].attn.k_proj"] |
|
row_layer_for_check = ["h[0].mlp.fc_out"] # use dim=0 for wte get_grad_tensors_for_check |
|
|
|
# Save gradient tensors for comparison between the original model and the sharded model. |
|
grads_to_check = {} |
|
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0: |
|
if test_config["precision"] == "fp32": |
|
atol, rtol = 1e-4, 1e-3 |
|
else: |
|
atol, rtol = 5e-3, 5e-3 |
|
col_layer_grads = get_grad_tensors_for_check( |
|
gptj, |
|
sharded_gptj, |
|
col_layer_for_check, |
|
tp_group, |
|
atol=atol, |
|
rtol=rtol, |
|
dim=0, |
|
verbose=False, |
|
) |
|
|
|
row_layer_grads = get_grad_tensors_for_check( |
|
gptj, |
|
sharded_gptj, |
|
row_layer_for_check, |
|
tp_group, |
|
atol=atol, |
|
rtol=rtol, |
|
dim=1, |
|
verbose=False, |
|
) |
|
grads_to_check.update(col_layer_grads) |
|
grads_to_check.update(row_layer_grads) |
|
|
|
# optimizer executes step |
|
org_optimizer.step() |
|
sharded_optimizer.step() |
|
|
|
# check last hidden state & loss |
|
if stage_manager is None or stage_manager.is_last_stage(): |
|
if test_config["precision"] == "fp32": |
|
atol, rtol = 1e-5, 1e-3 |
|
else: |
|
atol, rtol = 5e-3, 5e-3 |
|
|
|
if org_model.__class__.__name__ == "GPTJModel": |
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol) |
|
|
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol) |
|
|
|
# check weights |
|
if stage_manager is None or stage_manager.is_first_stage(): |
|
if test_config["precision"] == "fp32": |
|
atol, rtol = 5e-3, 1e-3 |
|
else: |
|
atol, rtol = 5e-3, 5e-3 |
|
check_weight( |
|
gptj, |
|
sharded_gptj, |
|
col_layer_for_check, |
|
tp_group, |
|
atol=atol, |
|
rtol=rtol, |
|
dim=0, |
|
verbose=False, |
|
) |
|
|
|
# check grads |
|
check_all_grad_tensors(grads_to_check) |
|
|
|
Randomizer.reset_index() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@parameterize( |
|
"test_config", |
|
[ |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 2, |
|
"num_microbatches": 4, |
|
"enable_all_optimization": True, |
|
#'use_lazy_init': True, GPTJ currently do not support lazy init; model training has issue even without sharding |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
}, |
|
{ |
|
"tp_size": 1, |
|
"pp_size": 2, |
|
"num_microbatches": 4, |
|
"enable_all_optimization": True, |
|
#'use_lazy_init': True, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
}, |
|
{ |
|
"tp_size": 4, |
|
"pp_size": 1, |
|
"enable_all_optimization": False, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
}, |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 1, |
|
"enable_all_optimization": False, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
}, |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 2, |
|
"num_microbatches": 4, |
|
"enable_all_optimization": False, |
|
#'use_lazy_init': True, |
|
"precision": "fp32", |
|
}, |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 1, |
|
"enable_all_optimization": True, |
|
#'use_lazy_init': True, |
|
"zero_stage": 2, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
}, |
|
{ |
|
"tp_size": 1, |
|
"pp_size": 2, |
|
"num_microbatches": 2, |
|
"enable_all_optimization": True, |
|
#'use_lazy_init': True, |
|
"zero_stage": 1, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
}, |
|
], |
|
) |
|
@clear_cache_before_run() |
|
def run_gptj_test(test_config): |
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_gptj") |
|
|
|
for name, ( |
|
model_fn, |
|
data_gen_fn, |
|
output_transform_fn, |
|
loss_fn, |
|
_, |
|
) in sub_model_zoo.items(): |
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) |
|
|
|
clear_layout_converter() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@parameterize( |
|
"test_config", |
|
[ |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 2, |
|
"num_microbatches": 4, |
|
"enable_all_optimization": False, |
|
"use_lazy_init": False, |
|
"precision": "fp32", |
|
"initial_scale": 1, |
|
}, |
|
{ |
|
"tp_size": 2, |
|
"pp_size": 2, |
|
"num_microbatches": 4, |
|
"enable_all_optimization": False, |
|
"use_lazy_init": False, |
|
"precision": "fp16", |
|
"zero_stage": 1, |
|
"initial_scale": 1, |
|
}, |
|
], |
|
) |
|
@clear_cache_before_run() |
|
def run_gptj_3d_test(test_config): |
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_gptj") |
|
|
|
for name, ( |
|
model_fn, |
|
data_gen_fn, |
|
output_transform_fn, |
|
loss_fn, |
|
_, |
|
) in sub_model_zoo.items(): |
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config) |
|
|
|
clear_layout_converter() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def check_gptj(rank, world_size, port): |
|
disable_existing_loggers() |
|
colossalai.launch( |
|
rank=rank, |
|
world_size=world_size, |
|
host="localhost", |
|
port=port, |
|
backend="nccl", |
|
) |
|
run_gptj_test() |
|
|
|
|
|
def check_gptj_3d(rank, world_size, port): |
|
disable_existing_loggers() |
|
colossalai.launch( |
|
rank=rank, |
|
world_size=world_size, |
|
host="localhost", |
|
port=port, |
|
backend="nccl", |
|
) |
|
run_gptj_3d_test() |
|
|
|
|
|
@pytest.mark.skip("TODO check_gptj has something wrong.") |
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def test_gptj(): |
|
spawn(check_gptj, 4) |
|
|
|
|
|
@pytest.mark.largedist |
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def test_gptj_3d(): |
|
spawn(check_gptj_3d, 8) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_gptj() |
|
test_gptj_3d()
|
|
|