Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

54 lines
1.5 KiB

from contextlib import nullcontext
import torch
import torch.nn as nn
from torch.testing import assert_close
import colossalai
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import FusedLayerNorm
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize("lazy_init", [False, True])
def check_layernorm(lazy_init: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
norm = nn.LayerNorm(128, 0.00001).cuda()
with ctx:
norm_copy = nn.LayerNorm(128, 0.00001).cuda()
norm1d = FusedLayerNorm.from_native_module(norm_copy, process_group=None)
assert norm1d.weight.shape == torch.Size([128])
assert norm_copy.weight is norm1d.weight
assert norm_copy.bias is norm1d.bias
# ensure state dict is reversibly loadable
norm.load_state_dict(norm1d.state_dict())
norm1d.load_state_dict(norm.state_dict())
# check computation correctness
x = torch.rand(4, 128).cuda()
out = norm(x)
gather_out = norm1d(x)
assert_close(out, gather_out)
# check backward correctness
out.sum().backward()
gather_out.sum().backward()
assert_close(norm.weight.grad, norm1d.weight.grad)
def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
check_layernorm()
@rerun_if_address_is_in_use()
def test_layernorm():
spawn(run_dist, nprocs=2)
if __name__ == "__main__":
test_layernorm()