mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.5 KiB
83 lines
2.5 KiB
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
|
|
import colossalai |
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.cluster import ProcessGroupMesh |
|
from colossalai.pipeline.p2p import PipelineP2PCommunication, create_send_metadata |
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
|
|
WORLD_SIZE = 2 |
|
|
|
|
|
def check_p2p_communication(): |
|
pg_mesh = ProcessGroupMesh(WORLD_SIZE) |
|
stage_manager = PipelineStageManager(pg_mesh, 0) |
|
p2p = PipelineP2PCommunication(stage_manager, overlap_p2p=False) |
|
rank = dist.get_rank() |
|
|
|
tensor = torch.ones(1, device=get_accelerator().get_current_device()) |
|
data = [ |
|
"tensor", |
|
tensor, |
|
[tensor], |
|
{"tensor": tensor}, |
|
] |
|
|
|
if rank == 0: |
|
for obj in data: |
|
p2p.send_forward(obj) |
|
for i in range(len(data)): |
|
recv_obj, _ = p2p.send_forward_recv_backward(data[i], send_first=False) |
|
assert recv_obj == data[-(i + 1)] |
|
elif rank == 1: |
|
for obj in data: |
|
recv_obj, _ = p2p.recv_forward() |
|
assert recv_obj == obj |
|
for i in range(len(data)): |
|
p2p.send_backward(data[-(i + 1)]) |
|
recv_obj, _ = p2p.recv_forward() |
|
assert recv_obj == data[i] |
|
|
|
if rank == 1: |
|
for obj in data: |
|
p2p.send_backward(obj) |
|
for i in range(len(data)): |
|
recv_obj, _ = p2p.send_backward_recv_forward(data[i], send_first=True) |
|
assert recv_obj == data[-(i + 1)] |
|
elif rank == 0: |
|
for obj in data: |
|
recv_obj, _ = p2p.recv_backward() |
|
assert recv_obj == obj |
|
for i in range(len(data)): |
|
recv_obj, _ = p2p.send_forward_recv_backward(data[-(i + 1)], send_first=False) |
|
assert recv_obj == data[i] |
|
|
|
if rank == 0: |
|
recv_obj, _ = p2p.send_forward_recv_backward( |
|
tensor, |
|
send_metadata=False, |
|
metadata_recv=create_send_metadata(tensor), |
|
) |
|
assert recv_obj == tensor |
|
elif rank == 1: |
|
recv_obj, _ = p2p.recv_forward(metadata_recv=create_send_metadata(tensor)) |
|
assert recv_obj == tensor |
|
p2p.send_backward(tensor, send_metadata=False) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") |
|
check_p2p_communication() |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_pipeline_p2p(): |
|
spawn(run_dist, WORLD_SIZE) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_pipeline_p2p()
|
|
|