mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
301 lines
10 KiB
301 lines
10 KiB
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.testing import assert_close |
|
|
|
import colossalai |
|
from colossalai.cluster import DistCoordinator, ProcessGroupMesh |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.nn.optimizer import DistributedLamb, Lamb |
|
from colossalai.tensor.d_tensor import get_shard_dim_1d, is_distributed_tensor |
|
from colossalai.tensor.d_tensor.api import clear_layout_converter |
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
|
from colossalai.testing.random import seed_all |
|
from colossalai.zero import LowLevelZeroOptimizer |
|
from tests.kit.model_zoo import model_zoo |
|
from tests.test_optimizer._utils import check_optim_states, run_bert_test |
|
|
|
_ALLOWED_P_G_TYPES = [ |
|
(torch.float, torch.float), # pure fp32 |
|
(torch.float, torch.bfloat16), # bfloat16 amp |
|
] |
|
|
|
_IN_DIM = 32 |
|
_HID_DIM = 128 |
|
_N_STEP = 3 |
|
_SEED = 1024 |
|
coordinator = None |
|
|
|
Net, data_gen, *_ = next(iter(model_zoo.get_sub_registry("simple_mlp").values())) |
|
TPNet, *_ = next(iter(model_zoo.get_sub_registry("simple_tp_mlp").values())) |
|
|
|
|
|
def assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group): |
|
rank = dist.get_rank(tp_group) |
|
tp_size = dist.get_world_size(tp_group) |
|
|
|
for (name, p), torch_p in zip(tp_model.named_parameters(), torch_model.parameters()): |
|
# if overflow, the weight won't be updated. so there will be no nan in p |
|
assert not torch.isnan(p).any() |
|
try: |
|
if is_distributed_tensor(p): |
|
split_dim = get_shard_dim_1d(p) |
|
torch_p = torch_p.chunk(tp_size, dim=split_dim)[rank] |
|
|
|
assert_close(p.float(), torch_p, rtol=rtol, atol=atol) |
|
except AssertionError as e: |
|
print(f"grad mismatch in {name}") |
|
raise e |
|
|
|
|
|
def setup_param_groups(bert_model: nn.Module) -> list: |
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in bert_model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": 0.1, |
|
}, |
|
{ |
|
"params": [p for n, p in bert_model.named_parameters() if any(nd in n for nd in no_decay)], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
return optimizer_grouped_parameters |
|
|
|
|
|
def force_assign_grad(p, g_dtype, grad=None): |
|
"""avoid inconsistent grad and param dtype error""" |
|
orig_p = p.data |
|
p.data = torch.randn_like(p, device=orig_p.device, dtype=g_dtype) if grad == None else grad |
|
p.grad = p.data |
|
p.data = orig_p |
|
|
|
|
|
def set_dist_grad( |
|
dist_module: nn.Module, |
|
torch_model: nn.Module, |
|
g_dtype: torch.dtype, |
|
group: dist.ProcessGroup, |
|
) -> None: |
|
""" |
|
Set grads chunks for Tensor Parallel or ZeRO DP. |
|
We do not need a separate treatment for ZeRO, |
|
as the LowLevelOptimizer takes care of reduce-scattering grads. |
|
""" |
|
rank = dist.get_rank(group) |
|
world_size = dist.get_world_size(group) |
|
|
|
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()): |
|
if torch_p.grad is None: |
|
# avoid inconsistent grad and param dtype error |
|
force_assign_grad(torch_p, g_dtype) |
|
else: |
|
torch_p.grad += torch.randn_like(torch_p, device=torch_p.device, dtype=g_dtype) |
|
|
|
if p.grad is None: |
|
force_assign_grad(p, g_dtype) |
|
|
|
if is_distributed_tensor(p): |
|
split_dim = get_shard_dim_1d(p) |
|
# Add grads only to the correctly split chunk |
|
force_assign_grad(p, g_dtype, torch_p.grad.chunk(world_size, dim=split_dim)[rank]) |
|
# assert_close(p.grad, torch_p.grad.chunk(world_size, dim=split_dim)[rank]) |
|
else: |
|
force_assign_grad(p, g_dtype, torch_p.grad) |
|
|
|
|
|
@parameterize("p_g_dtype", _ALLOWED_P_G_TYPES) |
|
@parameterize("bias_correction", [False, True]) |
|
@parameterize("tp_zero_size", [(1, 4), (4, 1), (2, 2)]) |
|
def run_dist_lamb_basic( |
|
bias_correction: bool, p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_size: tuple[int, int] |
|
) -> None: |
|
"""Test without forward""" |
|
p_dtype, g_dtype = p_g_dtype |
|
tp_size, zero_size = tp_zero_size |
|
|
|
# Set distributed groups |
|
rank = dist.get_rank() |
|
clear_layout_converter() # Ensure correct sharding |
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size) |
|
tp_group = proc_mesh.get_group_along_axis(0) |
|
|
|
tp_rank = dist.get_rank(tp_group) |
|
seed_all(_SEED) # Fix model init |
|
torch_model = Net(in_dim=_IN_DIM, hid_dim=_HID_DIM, identity=True).to(rank) |
|
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group).to(rank) |
|
# Ensure equal weight init |
|
assert_close( |
|
torch_model.fc1.weight[tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size], |
|
tp_model.fc1.weight, |
|
) |
|
assert_close( |
|
torch_model.fc2.weight[:, tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size], |
|
tp_model.fc2.weight, |
|
) |
|
|
|
# Set up optimizers |
|
lr = 1e-3 |
|
beta1, beta2 = 0.9, 0.999 |
|
eps = 1e-8 |
|
torch_optim = Lamb( |
|
setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps, bias_correction=bias_correction |
|
) |
|
optim = DistributedLamb( |
|
setup_param_groups(tp_model), |
|
lr=lr, |
|
betas=(beta1, beta2), |
|
eps=eps, |
|
bias_correction=bias_correction, |
|
) |
|
optim.setup_distributed(tp_group) |
|
|
|
rtol, atol = 8e-7, 8e-7 |
|
if p_dtype is torch.float16 or g_dtype is torch.float16: |
|
rtol, atol = 1e-6, 1e-6 |
|
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16: |
|
rtol, atol = 2e-6, 2e-6 |
|
|
|
for i in range(_N_STEP): |
|
seed_all(_SEED + i) # NOTE: having only one manual_seed above doesn't work? |
|
set_dist_grad(tp_model, torch_model, g_dtype, tp_group) |
|
|
|
torch_optim.step() |
|
optim.step() |
|
torch_optim.zero_grad() |
|
optim.zero_grad() |
|
try: |
|
assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group) |
|
except Exception as e: |
|
coordinator.print_on_master( |
|
f"step {i + 1}: bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}" |
|
) |
|
raise e |
|
|
|
|
|
@parameterize("p_g_dtype", _ALLOWED_P_G_TYPES) |
|
@parameterize("bias_correction", [False, True]) |
|
@parameterize("tp_zero_size", [(2, 2), (4, 1), (1, 4)]) |
|
def run_dist_lamb_fwd_bwd( |
|
bias_correction: bool, p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_size: tuple[int, int] |
|
) -> None: |
|
p_dtype, g_dtype = p_g_dtype |
|
tp_size, zero_size = tp_zero_size |
|
|
|
# Set distributed groups |
|
rank = dist.get_rank() |
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size) |
|
tp_group = proc_mesh.get_group_along_axis(0) |
|
dp_group = proc_mesh.get_group_along_axis(1) |
|
tp_rank = dist.get_rank(tp_group) |
|
|
|
seed_all(_SEED) |
|
clear_layout_converter() # Ensure correct sharding |
|
torch_model = Net(_IN_DIM, _HID_DIM).to(rank) |
|
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group).to(rank) |
|
|
|
assert_close( |
|
torch_model.fc1.weight[tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size], |
|
tp_model.fc1.weight, |
|
) |
|
assert_close( |
|
torch_model.fc2.weight[:, tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size], |
|
tp_model.fc2.weight, |
|
) |
|
|
|
# Set up optimizers |
|
lr = 1e-3 |
|
beta1, beta2 = 0.9, 0.999 |
|
eps = 1e-8 |
|
torch_optim = Lamb( |
|
setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps, bias_correction=bias_correction |
|
) |
|
optim = DistributedLamb( |
|
setup_param_groups(tp_model), |
|
lr=lr, |
|
betas=(beta1, beta2), |
|
eps=eps, |
|
bias_correction=bias_correction, |
|
) |
|
|
|
# Setup distributed optimizer |
|
if zero_size > 1: |
|
optim = LowLevelZeroOptimizer( |
|
optim, |
|
overlap_communication=True, |
|
initial_scale=128, |
|
partition_grad=True, |
|
dp_process_group=dp_group, |
|
verbose=True, |
|
) |
|
shard_to_param = optim.master_to_working_param |
|
optim.optim.setup_distributed(tp_group, dp_group, shard_to_param, is_zero=True) |
|
else: |
|
optim.setup_distributed(tp_group) |
|
|
|
rtol, atol = 8e-7, 8e-7 |
|
if p_dtype is torch.float16 or g_dtype is torch.float16: |
|
rtol, atol = 1e-6, 1e-6 |
|
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16: |
|
rtol, atol = 2e-6, 2e-6 |
|
|
|
seed_all(_SEED) # NOTE: having only one manual_seed above doesn't work? |
|
x = data_gen() |
|
x = x.cuda().to(dtype=p_dtype) |
|
|
|
out_tp = tp_model(x) |
|
out = torch_model(x) |
|
try: |
|
assert_close(out, out_tp, rtol=rtol, atol=atol) |
|
except Exception as e: |
|
coordinator.print_on_master( |
|
f"bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}" |
|
) |
|
raise e |
|
|
|
if zero_size > 1: |
|
optim.backward(out_tp.sum()) |
|
out.sum().backward() |
|
else: |
|
out_tp.sum().backward() |
|
out.sum().backward() |
|
|
|
torch_optim.step() |
|
optim.step() |
|
torch_optim.zero_grad() |
|
optim.zero_grad() |
|
try: |
|
assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group) |
|
check_optim_states(getattr(torch_optim, "optim", torch_optim), getattr(optim, "optim", optim)) |
|
except Exception as e: |
|
coordinator.print_on_master( |
|
f"bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}" |
|
) |
|
raise e |
|
|
|
|
|
def check_dist_lamb(rank, world_size, port): |
|
disable_existing_loggers() |
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
global coordinator |
|
coordinator = DistCoordinator() |
|
|
|
run_dist_lamb_basic() |
|
coordinator.print_on_master("Basic tests passed") |
|
|
|
run_dist_lamb_fwd_bwd() |
|
coordinator.print_on_master("Forward-backward tests passed") |
|
|
|
run_bert_test(optim_class=Lamb, sharded_optim_class=Lamb) |
|
print(f"rank {rank} tests passed :)") |
|
|
|
|
|
@pytest.mark.dist |
|
@rerun_if_address_is_in_use() |
|
def test_dist_lamb(): |
|
spawn(check_dist_lamb, nprocs=4) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_dist_lamb()
|
|
|