Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

89 lines
3.1 KiB

from copy import deepcopy
from typing import Type, Union
import pytest
import torch
import torch.nn as nn
from torch.optim import Adam, AdamW
from colossalai.nn.optimizer import CPUAdam, FusedAdam, HybridAdam
from tests.kit.model_zoo import model_zoo
_ALLOWED_OPTIM_DEVICES = [
(FusedAdam, torch.device("cuda:0")),
(CPUAdam, torch.device("cpu")),
(CPUAdam, torch.device("cuda:0")),
(HybridAdam, torch.device("cpu")),
(HybridAdam, torch.device("cuda:0")),
]
_ALLOWED_P_G_TYPES = [
(torch.float, torch.float), # pure fp32
(torch.float, torch.half), # fp16 amp
(torch.float, torch.bfloat16), # bfloat16 amp
]
N_STEPS = 3
def setup_param_groups(bert_model: nn.Module) -> list:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in bert_model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 0.1,
},
{
"params": [p for n, p in bert_model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
return optimizer_grouped_parameters
def set_grad(model: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype) -> None:
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
torch_p.grad = torch.rand_like(torch_p)
# avoid inconsistent grad and param dtype error
orig_p = p.data
p.data = torch_p.grad.clone().to(g_dtype)
p.grad = p.data
p.data = orig_p
@pytest.mark.parametrize("optim_cls, device", _ALLOWED_OPTIM_DEVICES)
@pytest.mark.parametrize("adamw", [False, True])
@pytest.mark.parametrize("p_dtype, g_dtype", _ALLOWED_P_G_TYPES)
def test_adam_optim_on_bert(
optim_cls: Union[Type[FusedAdam], Type[CPUAdam], Type[HybridAdam]],
device: torch.device,
adamw: bool,
p_dtype: torch.dtype,
g_dtype: torch.dtype,
) -> None:
model_fn, *_ = next(iter(model_zoo.get_sub_registry("transformers_bert_for_sequence_classification").values()))
torch_model = model_fn().to(device)
model = deepcopy(torch_model).to(p_dtype)
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
torch_optim_cls = AdamW if adamw else Adam
torch_optim = torch_optim_cls(setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps)
optim = optim_cls(setup_param_groups(model), lr=lr, betas=(beta1, beta2), eps=eps, adamw_mode=adamw)
rtol, atol = 1e-5, 1e-5
if p_dtype is torch.float16 or g_dtype is torch.float16:
rtol, atol = 2e-3, 2e-3
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
rtol, atol = 4e-3, 4e-3
for _ in range(N_STEPS):
set_grad(model, torch_model, g_dtype)
torch_optim.step()
optim.step()
torch_optim.zero_grad()
optim.zero_grad()
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
# if overflow, the weight won't be updated. so there will be no nan in p
assert not torch.isnan(p).any()
assert torch.allclose(p.float(), torch_p, rtol=rtol, atol=atol)