Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

73 lines
2.2 KiB

from copy import deepcopy
import pytest
import torch
import torch.distributed as dist
from torch.testing import assert_close
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
import colossalai
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.shardformer.modeling.mixtral import EPMixtralSparseMoeBlock
from colossalai.testing.utils import spawn
tokens, n_experts = 7, 4
hidden_size = 8
top_k = 2
def check_mixtral_moe_layer():
torch.cuda.set_device(dist.get_rank())
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=1,
ep_size=dist.get_world_size(),
)
config = MixtralConfig(
hidden_size=hidden_size,
intermediate_size=hidden_size * 2,
num_local_experts=n_experts,
num_experts_per_tok=top_k,
)
torch.manual_seed(0)
orig_model = MixtralSparseMoeBlock(config).cuda()
x = torch.rand(1, tokens, hidden_size, requires_grad=True).cuda()
orig_output, orig_logits = orig_model(x)
model = deepcopy(orig_model)
model = EPMixtralSparseMoeBlock.from_native_module(
model,
ep_group=plugin.ep_group,
tp_group=plugin.tp_group,
moe_dp_group=plugin.moe_dp_group,
)
ep_output, ep_logits = model(x)
assert_close(orig_logits, ep_logits)
assert_close(orig_output, ep_output)
orig_loss = orig_output.mean()
orig_loss.backward()
ep_loss = ep_output.mean()
ep_loss.backward()
assert_close(orig_loss, ep_loss)
name_to_p = {n: p for n, p in orig_model.named_parameters()}
for n, ep_p in model.named_parameters():
p = name_to_p[n]
if ep_p.grad is not None:
assert_close(p.grad, ep_p.grad)
def run_dist(rank: int, world_size: int, port: int):
colossalai.launch(rank, world_size, "localhost", port)
check_mixtral_moe_layer()
@pytest.mark.skip("tested in corresponding sharderformer")
@pytest.mark.parametrize("world_size", [2])
def test_mixtral_moe_layer(world_size: int):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_mixtral_moe_layer(2)