Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

78 lines
2.3 KiB

from copy import deepcopy
import pytest
import torch
import torch.distributed as dist
from torch.testing import assert_close
from transformers import AutoConfig, AutoModel
import colossalai
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.shardformer.modeling.deepseek import EPDeepseekMoE
from colossalai.testing.utils import spawn
tokens, n_experts = 7, 4
hidden_size = 8
top_k = 2
def check_deepseek_moe_layer():
torch.cuda.set_device(dist.get_rank())
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=1,
ep_size=dist.get_world_size(),
)
config = AutoConfig.from_pretrained(
"deepseek-ai/deepseek-moe-16b-base",
num_hidden_layers=1,
n_routed_experts=n_experts,
num_experts_per_tok=top_k,
hidden_size=hidden_size,
intermediate_size=hidden_size * 2,
first_k_dense_replace=0,
num_attention_heads=2,
trust_remote_code=True,
)
torch.manual_seed(0)
# get the moe layer in auto model
orig_model = AutoModel.from_config(config, trust_remote_code=True).layers[0].mlp.cuda()
x = torch.rand(1, tokens, hidden_size, requires_grad=True).cuda()
orig_output = orig_model(x)
model = deepcopy(orig_model)
model = EPDeepseekMoE.from_native_module(
model,
ep_group=plugin.ep_group,
moe_dp_group=plugin.moe_dp_group,
tp_group=plugin.tp_group,
)
ep_output = model(x)
assert_close(orig_output, ep_output)
orig_loss = orig_output.mean()
orig_loss.backward()
ep_loss = ep_output.mean()
ep_loss.backward()
assert_close(orig_loss, ep_loss)
name_to_p = {n: p for n, p in orig_model.named_parameters()}
for n, ep_p in model.named_parameters():
p = name_to_p[n]
if ep_p.grad is not None:
assert_close(p.grad, ep_p.grad)
def run_dist(rank: int, world_size: int, port: int):
colossalai.launch(rank, world_size, "localhost", port)
check_deepseek_moe_layer()
@pytest.mark.skip("tested in corresponding sharderformer")
@pytest.mark.parametrize("world_size", [2])
def test_deepseek_moe_layer(world_size: int):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_deepseek_moe_layer(2)