Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

59 lines
1.5 KiB

import pytest
import torch
from checks_2p5d.check_layer_2p5d import *
from checks_2p5d.check_operation_2p5d import check_AB, check_ABT, check_ATB
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import rerun_if_address_is_in_use, spawn
CONFIG = dict(
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=4, mode="2.5d", depth=1),
),
)
def check_operations():
check_AB()
check_ABT()
check_ATB()
def check_layer():
check_linear()
check_layernorm()
check_embed()
check_patch_embed()
check_vocab_parallel_embed()
check_classifier_no_given_weight()
check_vocab_parallel_classifier_no_given_weight()
check_classifier_given_embed_weight()
check_vocab_parallel_classifier_given_embed_weight()
check_loss()
check_vocab_parallel_loss()
def check_layer_and_operation(rank, world_size, port):
disable_existing_loggers()
launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = True
check_operations()
check_layer()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_2p5d():
spawn(check_layer_and_operation, 4)
if __name__ == "__main__":
test_2p5d()