Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

122 lines
3.4 KiB

import random
import numpy as np
import torch
from torch.multiprocessing import Manager
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM
import colossalai
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import rerun_if_address_is_in_use, spawn
def data_gen(batch_size: int = 4, seq_len: int = 512):
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=torch.cuda.current_device())
return input_ids
def setup_seed(seed):
torch.manual_seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def check_streamingllm():
setup_seed(20)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = LlamaForCausalLM(
LlamaConfig(
vocab_size=50000,
hidden_size=512,
intermediate_size=1536,
num_attention_heads=4,
num_key_value_heads=2,
num_hidden_layers=16,
)
).cuda()
model = model.eval()
input_token_ids = data_gen(1, 4)
output_len = 128
inference_config = InferenceConfig(
max_batch_size=1,
max_output_len=output_len,
dtype="fp32",
use_cuda_kernel=True,
enable_streamingllm=True,
start_token_size=4,
generated_token_size=32,
)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
assert inference_engine.generation_config.max_new_tokens == output_len
inference_engine.add_request(prompts_token_ids=input_token_ids)
assert inference_engine.request_handler._has_waiting()
assert inference_config.start_token_size == inference_config.block_size
request_handler = inference_engine.request_handler
running_bb = request_handler.running_bb
for _ in range(12):
inference_engine.step()
assert running_bb.block_tables[0].tolist() == [0, -1, -1, -1]
assert running_bb.seq_lengths[0].item() == 16
for _ in range(16):
inference_engine.step()
assert running_bb.block_tables[0].tolist() == [0, 1, -1, -1]
assert running_bb.seq_lengths[0].item() == 32
for _ in range(16):
inference_engine.step()
assert running_bb.block_tables[0].tolist() == [0, 1, 2, -1]
assert running_bb.seq_lengths[0].item() == 48
for _ in range(16):
inference_engine.step()
assert running_bb.block_tables[0].tolist() == [0, 2, 3, -1]
assert running_bb.seq_lengths[0].item() == 48
for _ in range(1):
inference_engine.step()
assert running_bb.block_tables[0].tolist() == [0, 2, 3, 1]
assert running_bb.seq_lengths[0].item() == 49
for _ in range(15):
inference_engine.step()
assert running_bb.block_tables[0].tolist() == [0, 3, 1, -1]
assert running_bb.seq_lengths[0].item() == 48
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
if ret:
ret[rank] = func_to_run(**kwargs)
else:
func_to_run(**kwargs)
@rerun_if_address_is_in_use()
def test_engine():
manager = Manager()
result_list = manager.list([-1] * 1) # Create a shared list
spawn(run_dist, 1, func_to_run=check_streamingllm, ret=result_list)
return result_list[0]
if __name__ == "__main__":
test_engine()