mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
7.2 KiB
208 lines
7.2 KiB
import random |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
from torch.multiprocessing import Manager |
|
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM |
|
|
|
import colossalai |
|
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig |
|
from colossalai.inference.core.engine import InferenceEngine |
|
from colossalai.inference.modeling.models.glide_llama import GlideLlamaConfig, GlideLlamaForCausalLM |
|
from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy |
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
|
|
|
|
|
def setup_seed(seed): |
|
torch.manual_seed(seed) |
|
torch.random.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
|
|
|
|
def check_inference_engine(use_engine=False, prompt_template=None, do_sample=True, policy=None): |
|
setup_seed(20) |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") |
|
model = LlamaForCausalLM( |
|
LlamaConfig( |
|
vocab_size=50000, |
|
hidden_size=512, |
|
intermediate_size=1536, |
|
num_attention_heads=4, |
|
num_key_value_heads=2, |
|
num_hidden_layers=16, |
|
) |
|
).cuda() |
|
model = model.eval() |
|
inputs = [ |
|
"介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,", |
|
"介绍一下武汉,", |
|
] |
|
|
|
output_len = 38 |
|
do_sample = do_sample |
|
top_p = 0.5 |
|
top_k = 50 |
|
|
|
if use_engine: |
|
inference_config = InferenceConfig( |
|
max_output_len=output_len, |
|
prompt_template=prompt_template, |
|
dtype="fp32", |
|
use_cuda_kernel=True, |
|
tp_size=dist.get_world_size(), |
|
) |
|
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy) |
|
assert inference_engine.generation_config.max_new_tokens == output_len |
|
inference_engine.add_request(prompts=inputs) |
|
assert inference_engine.request_handler._has_waiting() |
|
generation_config = GenerationConfig( |
|
max_new_tokens=output_len, do_sample=do_sample, dtype="fp32", top_p=top_p, top_k=top_k |
|
) |
|
outputs = inference_engine.generate(generation_config=generation_config) |
|
else: |
|
if prompt_template: |
|
# apply prompt template |
|
inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs] |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"] |
|
inputs = inputs.cuda() |
|
generation_config = GenerationConfig( |
|
do_sample=do_sample, |
|
dtype="fp32", |
|
top_p=top_p, |
|
top_k=top_k, |
|
pad_token_id=tokenizer.pad_token_id, |
|
max_new_tokens=output_len, |
|
) |
|
outputs = model.generate(inputs, generation_config=generation_config) |
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
return outputs |
|
|
|
|
|
def run_engine(world_size, **kwargs): |
|
manager = Manager() |
|
result_list = manager.list([-1] * world_size) # Create a shared list |
|
|
|
spawn(run_dist, world_size, func_to_run=check_inference_engine, ret=result_list, **kwargs) |
|
return result_list[0] |
|
|
|
|
|
def check_spec_dec(num_layers, max_length): |
|
torch.manual_seed(123) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") |
|
# Dummy configs for testing |
|
toy_config = LlamaConfig(num_hidden_layers=num_layers) |
|
toy_config.pad_token_id = tokenizer.eos_token_id |
|
drafter_model = LlamaForCausalLM(toy_config) |
|
drafter_model = drafter_model.eval().cuda() |
|
large_config = LlamaConfig( |
|
hidden_size=4096, |
|
intermediate_size=11008, |
|
num_attention_heads=32, |
|
num_hidden_layers=8, |
|
num_key_value_heads=32, |
|
max_position_embeddings=2048, |
|
) |
|
large_config.pad_token_id = tokenizer.eos_token_id |
|
main_model = LlamaForCausalLM(large_config) |
|
|
|
inference_config = InferenceConfig( |
|
dtype="fp16", |
|
micro_batch_size=1, |
|
max_batch_size=1, |
|
max_input_len=128, |
|
max_output_len=128, |
|
prefill_ratio=1.2, |
|
block_size=16, |
|
) |
|
engine = InferenceEngine(main_model, tokenizer, inference_config) |
|
engine.enable_spec_dec(drafter_model, n_spec_tokens=5) |
|
|
|
dummy_inputs = torch.randint(low=5, high=1000, size=(1, 10), dtype=torch.long, device="cuda") |
|
generation_config = GenerationConfig( |
|
pad_token_id=tokenizer.eos_token_id, |
|
max_length=max_length, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
out, out_token_ids = engine.generate( |
|
prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True |
|
) |
|
engine.disable_spec_dec() |
|
engine.clear_spec_dec() |
|
|
|
assert not engine.use_spec_dec |
|
assert engine.drafter is None and engine.drafter_model is None |
|
|
|
max_new_tokens = max_length - dummy_inputs.size(1) |
|
assert len(out) == 1 |
|
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens |
|
|
|
# test GLIDE model |
|
glide_config = GlideLlamaConfig( |
|
intermediate_size=8192, |
|
large_hidden_size=4096, |
|
large_num_attention_heads=32, |
|
num_hidden_layers=num_layers, |
|
) |
|
glide_model = GlideLlamaForCausalLM(glide_config) |
|
engine.enable_spec_dec(glide_model, use_glide_drafter=True) |
|
|
|
out, out_token_ids = engine.generate( |
|
prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True |
|
) |
|
engine.clear_spec_dec() |
|
|
|
assert len(out) == 1 |
|
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens |
|
|
|
|
|
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs): |
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") |
|
|
|
if ret: |
|
ret[rank] = func_to_run(**kwargs) |
|
else: |
|
func_to_run(**kwargs) |
|
|
|
|
|
@pytest.mark.largedist |
|
@parameterize("prompt_template", [None, "llama"]) |
|
@parameterize("do_sample", [False]) |
|
@rerun_if_address_is_in_use() |
|
def test_tp_engine(prompt_template, do_sample): |
|
kwargs1 = { |
|
"use_engine": True, |
|
"prompt_template": prompt_template, |
|
"do_sample": do_sample, |
|
"policy": NoPaddingLlamaModelInferPolicy(), |
|
} |
|
|
|
kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None} |
|
|
|
colossal_tp_1_output = run_engine(1, **kwargs1) |
|
colossal_tp_2_output = run_engine(2, **kwargs1) |
|
transformer_tp_1_output = run_engine(1, **kwargs2) |
|
|
|
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output): |
|
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}" |
|
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}" |
|
|
|
|
|
@pytest.mark.largedist |
|
@parameterize("num_layers", [1]) |
|
@parameterize("max_length", [64]) |
|
@rerun_if_address_is_in_use() |
|
def test_spec_dec(num_layers, max_length): |
|
spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_tp_engine() |
|
test_spec_dec()
|
|
|