Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

208 lines
7.2 KiB

import random
import numpy as np
import pytest
import torch
import torch.distributed as dist
from torch.multiprocessing import Manager
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM
import colossalai
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.inference.modeling.models.glide_llama import GlideLlamaConfig, GlideLlamaForCausalLM
from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
def setup_seed(seed):
torch.manual_seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def check_inference_engine(use_engine=False, prompt_template=None, do_sample=True, policy=None):
setup_seed(20)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = LlamaForCausalLM(
LlamaConfig(
vocab_size=50000,
hidden_size=512,
intermediate_size=1536,
num_attention_heads=4,
num_key_value_heads=2,
num_hidden_layers=16,
)
).cuda()
model = model.eval()
inputs = [
"介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,",
"介绍一下武汉,",
]
output_len = 38
do_sample = do_sample
top_p = 0.5
top_k = 50
if use_engine:
inference_config = InferenceConfig(
max_output_len=output_len,
prompt_template=prompt_template,
dtype="fp32",
use_cuda_kernel=True,
tp_size=dist.get_world_size(),
)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy)
assert inference_engine.generation_config.max_new_tokens == output_len
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(
max_new_tokens=output_len, do_sample=do_sample, dtype="fp32", top_p=top_p, top_k=top_k
)
outputs = inference_engine.generate(generation_config=generation_config)
else:
if prompt_template:
# apply prompt template
inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs]
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
inputs = inputs.cuda()
generation_config = GenerationConfig(
do_sample=do_sample,
dtype="fp32",
top_p=top_p,
top_k=top_k,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=output_len,
)
outputs = model.generate(inputs, generation_config=generation_config)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
def run_engine(world_size, **kwargs):
manager = Manager()
result_list = manager.list([-1] * world_size) # Create a shared list
spawn(run_dist, world_size, func_to_run=check_inference_engine, ret=result_list, **kwargs)
return result_list[0]
def check_spec_dec(num_layers, max_length):
torch.manual_seed(123)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
# Dummy configs for testing
toy_config = LlamaConfig(num_hidden_layers=num_layers)
toy_config.pad_token_id = tokenizer.eos_token_id
drafter_model = LlamaForCausalLM(toy_config)
drafter_model = drafter_model.eval().cuda()
large_config = LlamaConfig(
hidden_size=4096,
intermediate_size=11008,
num_attention_heads=32,
num_hidden_layers=8,
num_key_value_heads=32,
max_position_embeddings=2048,
)
large_config.pad_token_id = tokenizer.eos_token_id
main_model = LlamaForCausalLM(large_config)
inference_config = InferenceConfig(
dtype="fp16",
micro_batch_size=1,
max_batch_size=1,
max_input_len=128,
max_output_len=128,
prefill_ratio=1.2,
block_size=16,
)
engine = InferenceEngine(main_model, tokenizer, inference_config)
engine.enable_spec_dec(drafter_model, n_spec_tokens=5)
dummy_inputs = torch.randint(low=5, high=1000, size=(1, 10), dtype=torch.long, device="cuda")
generation_config = GenerationConfig(
pad_token_id=tokenizer.eos_token_id,
max_length=max_length,
eos_token_id=tokenizer.eos_token_id,
)
out, out_token_ids = engine.generate(
prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True
)
engine.disable_spec_dec()
engine.clear_spec_dec()
assert not engine.use_spec_dec
assert engine.drafter is None and engine.drafter_model is None
max_new_tokens = max_length - dummy_inputs.size(1)
assert len(out) == 1
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens
# test GLIDE model
glide_config = GlideLlamaConfig(
intermediate_size=8192,
large_hidden_size=4096,
large_num_attention_heads=32,
num_hidden_layers=num_layers,
)
glide_model = GlideLlamaForCausalLM(glide_config)
engine.enable_spec_dec(glide_model, use_glide_drafter=True)
out, out_token_ids = engine.generate(
prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True
)
engine.clear_spec_dec()
assert len(out) == 1
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
if ret:
ret[rank] = func_to_run(**kwargs)
else:
func_to_run(**kwargs)
@pytest.mark.largedist
@parameterize("prompt_template", [None, "llama"])
@parameterize("do_sample", [False])
@rerun_if_address_is_in_use()
def test_tp_engine(prompt_template, do_sample):
kwargs1 = {
"use_engine": True,
"prompt_template": prompt_template,
"do_sample": do_sample,
"policy": NoPaddingLlamaModelInferPolicy(),
}
kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None}
colossal_tp_1_output = run_engine(1, **kwargs1)
colossal_tp_2_output = run_engine(2, **kwargs1)
transformer_tp_1_output = run_engine(1, **kwargs2)
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output):
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}"
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}"
@pytest.mark.largedist
@parameterize("num_layers", [1])
@parameterize("max_length", [64])
@rerun_if_address_is_in_use()
def test_spec_dec(num_layers, max_length):
spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length)
if __name__ == "__main__":
test_tp_engine()
test_spec_dec()