Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

50 lines
1.4 KiB

import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import linear_fp8
from colossalai.quantization.fp8_hook import FP8Hook
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
from colossalai.utils import get_current_device
REPLACED = False
TRIGGERED = False
def new_linear_fp8(x, w, bias=None):
global TRIGGERED
TRIGGERED = True
return linear_fp8(x, w, bias)
class FP8TestHook(FP8Hook):
def rewrite_op(self, func):
func = super().rewrite_op(func)
if func is linear_fp8:
global REPLACED
REPLACED = True
return new_linear_fp8
return func
D_IN, D_OUT = 16, 32
B, S = 2, 64
DTYPE = torch.bfloat16
@pytest.mark.skipif(get_accelerator().get_device_capability()[0] < 9, reason="Test requires device capability >= 9.0")
def test_fp8_hook():
# create tensors
w = nn.Parameter(torch.rand(D_OUT, D_IN, device=get_current_device(), dtype=DTYPE))
x = torch.rand(B, S, D_IN, device=get_current_device(), dtype=DTYPE, requires_grad=True)
w.__class__ = ColoParameter
w.__init__(w, requires_grad=True)
hook = FP8TestHook()
with ColoParamOpHookManager.use_hooks(hook):
o = F.linear(x, w)
assert o.shape == (B, S, D_OUT)
assert REPLACED
assert TRIGGERED