Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

107 lines
3.3 KiB

import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from packaging import version
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing import assert_close
from colossalai import launch
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
# example modified from https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
def cleanup():
dist.destroy_process_group()
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(100, 100)
self.relu = nn.ReLU()
self.net2 = nn.Linear(100, 50)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
@parameterize("mode", ["grad", "params"])
def run_model(mode):
rank = dist.get_rank()
from colossalai.quantization.utils import patch_fsdp_params_comm_hook
patch_fsdp_params_comm_hook()
def get_grads_after_one_iteration(grad_hook=None, params_hook=None):
torch.manual_seed(0)
# create model and move it to GPU with id rank
model = ToyModel().to(rank)
fsdp_model = FSDP(model)
if grad_hook is not None:
fsdp_model.register_comm_hook(None, grad_hook)
if params_hook is not None:
fsdp_model.register_params_comm_hook(None, params_hook)
loss_fn = nn.MSELoss()
optimizer = optim.SGD(fsdp_model.parameters(), lr=0.001)
optimizer.zero_grad()
outputs = fsdp_model(torch.randn(20, 100))
labels = torch.randn(20, 50).to(rank)
loss_fn(outputs, labels).backward()
optimizer.step()
torch.distributed.barrier()
grad_dict = {}
for name, params in fsdp_model.named_parameters():
grad_dict[name] = params.grad
return grad_dict
from colossalai.quantization.fp8 import fp8_compress_fsdp_grad_comm_hook, fp8_compress_fsdp_params_comm_hook
if mode == "grad":
grad_dict = get_grads_after_one_iteration()
for hook in [
fp8_compress_fsdp_grad_comm_hook,
]:
grad_dict_w_hook = get_grads_after_one_iteration(grad_hook=hook)
if dist.get_rank() == 0:
for name in grad_dict:
assert_close(grad_dict[name], grad_dict_w_hook[name], rtol=0.1, atol=0.1)
elif mode == "params":
grad_dict = get_grads_after_one_iteration()
for hook in [
fp8_compress_fsdp_params_comm_hook,
]:
grad_dict_w_hook = get_grads_after_one_iteration(params_hook=hook)
if dist.get_rank() == 0:
for name in grad_dict:
assert_close(grad_dict[name], grad_dict_w_hook[name], rtol=0.1, atol=0.1)
else:
raise NotImplementedError
def demo_basic(rank, world_size, port):
print(f"Running basic FSDP example on rank {rank}.")
launch(rank=rank, world_size=world_size, port=port, host="localhost")
run_model()
cleanup()
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("2.2.0"), reason="torch version < 2.2.0.")
@rerun_if_address_is_in_use()
def test_fsdp():
n_gpus = torch.cuda.device_count()
assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}"
spawn(demo_basic, n_gpus)
if __name__ == "__main__":
test_fsdp()