Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

55 lines
1.5 KiB

import torch
import torch.distributed as dist
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import all_reduce_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize(
"shape",
[
(3, 7),
(4, 7),
(7, 4),
(8, 9),
(3),
(7,),
(8,),
],
)
@parameterize("dtype", [torch.float16, torch.bfloat16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
@parameterize("async_op", [True, False])
def check_4gpu(shape, dtype, fp8_format, async_op):
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
x_fp8 = x.clone()
origin_handle = dist.all_reduce(x, async_op=async_op)
fp8_handle = all_reduce_fp8(x_fp8, fp8_format=fp8_format, async_op=async_op)
if async_op:
origin_handle.wait()
fp8_handle.wait()
assert_close(x, x_fp8, rtol=0.1, atol=0.1)
origin_handle = dist.all_reduce(x, op=dist.ReduceOp.AVG, async_op=async_op)
fp8_handle = all_reduce_fp8(x_fp8, op=dist.ReduceOp.AVG, fp8_format=fp8_format, async_op=async_op)
if async_op:
origin_handle.wait()
fp8_handle.wait()
assert_close(x, x_fp8, rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_all_reduce():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_reduce()