Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

39 lines
1.5 KiB

import torch
import torch.distributed as dist
from torch.distributed.distributed_c10d import _get_default_group
from torch.testing import assert_close
from colossalai import launch
from colossalai.accelerator import get_accelerator
from colossalai.quantization.fp8 import _all_to_all_fp8
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize("shape", [(16, 8, 4)])
@parameterize("scatter_dim", [0, 1, 2])
@parameterize("dtype", [torch.bfloat16, torch.float16])
@parameterize("fp8_format", ["e4m3", "e5m2"])
def check_4gpu(shape, scatter_dim, dtype, fp8_format):
world_size = dist.get_world_size()
input_tensor = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
input_tensor_list = list(torch.chunk(input_tensor, world_size, scatter_dim))
input_tensor_list = [x.contiguous() for x in input_tensor_list]
output_tensor_list_fp8 = [torch.empty_like(x) for x in input_tensor_list]
output_tensor_list = [torch.empty_like(x) for x in input_tensor_list]
_all_to_all_fp8(output_tensor_list_fp8, input_tensor_list, group=_get_default_group(), fp8_format=fp8_format)
dist.all_to_all(output_tensor_list, input_tensor_list, group=_get_default_group())
assert_close(output_tensor_list_fp8, output_tensor_list, rtol=0.1, atol=0.1)
def run_dist(rank, world_size, port):
launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_4gpu()
@rerun_if_address_is_in_use()
def test_all_to_all():
spawn(run_dist, 4)
if __name__ == "__main__":
test_all_to_all()