mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.6 KiB
96 lines
3.6 KiB
from typing import Any, Callable, Union |
|
|
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
|
|
from colossalai.testing import clear_cache_before_run |
|
|
|
try: |
|
from colossalai._analyzer._subclasses import MetaTensor |
|
except: |
|
pass |
|
|
|
aten = torch.ops.aten |
|
|
|
registered_meta = { |
|
("aten.convolution.default", True): [ # (aten ops, requires_backward) |
|
(nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)), |
|
(nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4)), |
|
(nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4, 4)), |
|
(nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)), |
|
( |
|
nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), |
|
torch.rand(2, 3, 4, 4), |
|
), |
|
( |
|
nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), |
|
torch.rand(2, 3, 4, 4, 4), |
|
), |
|
], |
|
("aten.native_batch_norm.default", True): [ |
|
(nn.BatchNorm1d(4), torch.rand(2, 4)), |
|
(nn.BatchNorm2d(4), torch.rand(1, 4, 4, 4)), |
|
(nn.BatchNorm3d(4), torch.rand(1, 4, 4, 4, 4)), |
|
], |
|
("aten.native_layer_norm.default", True): [ |
|
(nn.LayerNorm(4), torch.rand(1, 2, 3, 4)), |
|
], |
|
("aten.avg_pool1d.default", True): [ |
|
(nn.MaxPool1d(3, stride=2), torch.rand(4, 5, 5)), |
|
(nn.AvgPool1d(3, stride=2), torch.rand(4, 5, 5)), |
|
(nn.AdaptiveMaxPool1d(3), torch.rand(4, 5, 5)), |
|
(nn.AdaptiveAvgPool1d(3), torch.rand(4, 5, 5)), |
|
], |
|
("aten.avg_pool2d.default", True): [ |
|
(nn.MaxPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)), |
|
(nn.AvgPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)), |
|
(nn.AdaptiveMaxPool2d((3, 2)), torch.rand(2, 4, 5, 5)), |
|
(nn.AdaptiveAvgPool2d((3, 2)), torch.rand(2, 4, 5, 5)), |
|
], |
|
("aten.relu.default", True): [ |
|
(nn.ReLU(), torch.rand(4, 3, 1, 2)), |
|
(nn.LeakyReLU(), torch.rand(4, 3, 1, 2)), |
|
(nn.SiLU(), torch.rand(4, 3, 1, 2)), |
|
(nn.GELU(), torch.rand(4, 3, 1, 2)), |
|
(nn.ELU(), torch.rand(4, 3, 1, 2)), |
|
(nn.Sigmoid(), torch.rand(4, 3, 1, 2)), |
|
(nn.Tanh(), torch.rand(4, 3, 1, 2)), |
|
(nn.Hardswish(), torch.rand(4, 3, 1, 2)), |
|
], |
|
} |
|
|
|
|
|
def compare_all(tensor: torch.Tensor, meta_tensor: torch.Tensor) -> Any: |
|
assert ( |
|
tensor.shape == meta_tensor.shape |
|
), f"the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match." |
|
assert ( |
|
tensor.dtype == meta_tensor.dtype |
|
), f"the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match." |
|
assert ( |
|
tensor.stride() == meta_tensor.stride() |
|
), f"the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match." |
|
|
|
|
|
def run_and_compare(f: Union[nn.Module, Callable], x: torch.Tensor, requires_backward=False) -> Any: |
|
x.requires_grad = requires_backward |
|
meta_x = MetaTensor(x) |
|
x_out, meta_out = f(x), f(meta_x) |
|
compare_all(x_out, meta_out) |
|
if requires_backward: |
|
x_out.sum().backward() |
|
meta_out.sum().backward() |
|
compare_all(x.grad, meta_x.grad) |
|
|
|
|
|
@pytest.mark.skipif(torch.__version__ < "1.12.0", reason="torch version < 12") |
|
@clear_cache_before_run() |
|
def test_meta_aten(): |
|
for (aten_op, requires_backward), v in registered_meta.items(): |
|
for f, x in v: |
|
run_and_compare(f, x, requires_backward) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_meta_aten()
|
|
|