Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

231 lines
10 KiB

#pragma once
#if defined(COLOSSAL_WITH_CUDA)
#include <cuda.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#endif
#include <functional>
#include "cast_functor.h"
#include "common/data_type.h"
#include "common/micros.h"
namespace colossalAI {
namespace funcs {
enum class BinaryOpType { kAdd = 0, kMinus, kMul, kDiv, kMax, kMin };
// Note(LiuYang): This file provides base math operation for data type
// include POD and cuda built-in type such as half and __nv_bfloat16.
// Implementation of common and simple binary operators should be placed here,
// otherwise, they should be placed in a new file under functors dir.
template <typename LT, typename RT, typename RET, BinaryOpType op_type>
struct BinaryOpFunctor;
#define STMTS_WRAPPER(...) __VA_ARGS__
#define COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION( \
LT, RT, RET, BINARY_OP_TYPE, FUNCTION_MODIFIER, STMTS, ARGS...) \
template <ARGS> \
struct BinaryOpFunctor<LT, RT, RET, BINARY_OP_TYPE> \
: public std::binary_function<LT, RT, RET> { \
FUNCTION_MODIFIER RET operator()(LT lhs, RT rhs) STMTS \
};
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kAdd, HOSTDEVICE,
STMTS_WRAPPER({ return lhs + rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMinus,
HOSTDEVICE,
STMTS_WRAPPER({ return lhs - rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMul, HOSTDEVICE,
STMTS_WRAPPER({ return lhs * rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kDiv, HOSTDEVICE,
STMTS_WRAPPER({ return lhs / rhs; }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMax, HOSTDEVICE,
STMTS_WRAPPER({ return max(lhs, rhs); }),
typename T)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(T, T, T, BinaryOpType::kMin, HOSTDEVICE,
STMTS_WRAPPER({ return min(lhs, rhs); }),
typename T)
#if defined(COLOSSAL_WITH_CUDA)
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half, half, half, BinaryOpType::kMinus,
DEVICE, STMTS_WRAPPER({
return __hsub(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half, half, half, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half2, half2, half2, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd2(lhs, rhs);
}))
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, __nv_bfloat16,
__nv_bfloat16, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, __nv_bfloat16,
__nv_bfloat16, BinaryOpType::kMinus,
DEVICE, STMTS_WRAPPER({
return __hsub(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat162, __nv_bfloat162,
__nv_bfloat162, BinaryOpType::kAdd,
DEVICE, STMTS_WRAPPER({
return __hadd2(lhs, rhs);
}))
#else
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, __nv_bfloat16, __nv_bfloat16, BinaryOpType::kAdd, DEVICE,
STMTS_WRAPPER({
return __float2bfloat16(__bfloat162float(lhs) + __bfloat162float(rhs));
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, __nv_bfloat16, __nv_bfloat16, BinaryOpType::kMinus, DEVICE,
STMTS_WRAPPER({
return __float2bfloat16(__bfloat162float(lhs) - __bfloat162float(rhs));
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, __nv_bfloat162, __nv_bfloat162, BinaryOpType::kAdd, DEVICE,
STMTS_WRAPPER({
return __floats2bfloat162_rn(__low2float(lhs) + __low2float(rhs),
__high2float(lhs) + __high2float(rhs));
}))
#endif /* defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 */
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half, half, half, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(half2, half2, half2, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul2(lhs, rhs);
}))
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat16, __nv_bfloat16,
__nv_bfloat16, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul(lhs, rhs);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(__nv_bfloat162, __nv_bfloat162,
__nv_bfloat162, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
return __hmul2(lhs, rhs);
}))
#else
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat16, __nv_bfloat16, __nv_bfloat16, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
return __float2bfloat16(__bfloat162float(lhs) * __bfloat162float(rhs));
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, __nv_bfloat162, __nv_bfloat162, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
return __floats2bfloat162_rn(__low2float(lhs) * __low2float(rhs),
__high2float(lhs) * __high2float(rhs));
}))
#endif /* defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 */
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
float2, float2, float2, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({ return make_float2(lhs.x * rhs.x, lhs.y * rhs.y); }))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(float4, float4, float4,
BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
return make_float4(
lhs.x * rhs.x, lhs.y * rhs.y,
lhs.z * rhs.z, lhs.w * rhs.w);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
__nv_bfloat162, __nv_bfloat162, float2, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
CastFunctor<__nv_bfloat162, float2> cast;
BinaryOpFunctor<float2, float2, float2, BinaryOpType::kMul> mul;
float2 fa = cast(lhs);
float2 fb = cast(rhs);
return mul(fa, fb);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(dtype::bfloat164, dtype::bfloat164,
float4, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
float4 fc;
CastFunctor<__nv_bfloat16, float> cast;
fc.x = cast(lhs.x.x) * cast(rhs.x.x);
fc.y = cast(lhs.x.y) * cast(rhs.x.y);
fc.z = cast(lhs.y.x) * cast(rhs.y.x);
fc.w = cast(lhs.y.y) * cast(rhs.y.y);
return fc;
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
dtype::bfloat168, dtype::bfloat168, dtype::float8, BinaryOpType::kMul,
DEVICE, STMTS_WRAPPER({
dtype::float8 fc;
BinaryOpFunctor<__nv_bfloat162, __nv_bfloat162, float2,
BinaryOpType::kMul>
mul;
fc.x = mul(lhs.x, rhs.x);
fc.y = mul(lhs.y, rhs.y);
fc.z = mul(lhs.z, rhs.z);
fc.w = mul(lhs.w, rhs.w);
return fc;
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
half2, half2, float2, BinaryOpType::kMul, DEVICE, STMTS_WRAPPER({
CastFunctor<half2, float2> cast;
BinaryOpFunctor<float2, float2, float2, BinaryOpType::kMul> mul;
float2 fa = cast(lhs);
float2 fb = cast(rhs);
return mul(fa, fb);
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(dtype::half4, dtype::half4, float4,
BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
float4 fc;
CastFunctor<half, float> cast;
fc.x = cast(lhs.x.x) * cast(rhs.x.x);
fc.y = cast(lhs.x.y) * cast(rhs.x.y);
fc.z = cast(lhs.y.x) * cast(rhs.y.x);
fc.w = cast(lhs.y.y) * cast(rhs.y.y);
return fc;
}))
COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION(
dtype::half8, dtype::half8, dtype::float8, BinaryOpType::kMul, DEVICE,
STMTS_WRAPPER({
dtype::float8 fc;
BinaryOpFunctor<half2, half2, float2, BinaryOpType::kMul> mul;
fc.x = mul(lhs.x, rhs.x);
fc.y = mul(lhs.y, rhs.y);
fc.z = mul(lhs.z, rhs.z);
fc.w = mul(lhs.w, rhs.w);
return fc;
}))
#endif /* defined(COLOSSAL_WITH_CUDA) */
#undef COLOSSAL_BINARY_FUNCTOR_SPECIALIZATION
#undef STMTS_WRAPPER
} // namespace funcs
} // namespace colossalAI