mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Hongxin Liu
7f8b16635b
|
7 months ago | |
---|---|---|
.. | ||
README.md | 2 years ago | |
data.py | 1 year ago | |
finetune.py | 7 months ago | |
requirements.txt | 2 years ago | |
test_ci.sh | 1 year ago |
README.md
Finetune BERT on GLUE
🚀 Quick Start
This example provides a training script, which provides an example of finetuning BERT on GLUE dataset.
- Training Arguments
-t
,--task
: GLUE task to run. Defaults tomrpc
.-p
,--plugin
: Plugin to use. Choices:torch_ddp
,torch_ddp_fp16
,gemini
,low_level_zero
. Defaults totorch_ddp
.--target_f1
: Target f1 score. Raise exception if not reached. Defaults toNone
.
Install requirements
pip install -r requirements.txt
Train
# train with torch DDP with fp32
colossalai run --nproc_per_node 4 finetune.py
# train with torch DDP with mixed precision training
colossalai run --nproc_per_node 4 finetune.py -p torch_ddp_fp16
# train with gemini
colossalai run --nproc_per_node 4 finetune.py -p gemini
# train with low level zero
colossalai run --nproc_per_node 4 finetune.py -p low_level_zero
Expected F1-score will be:
Model | Single-GPU Baseline FP32 | Booster DDP with FP32 | Booster DDP with FP16 | Booster Gemini | Booster Low Level Zero |
---|---|---|---|---|---|
bert-base-uncased | 0.86 | 0.88 | 0.87 | 0.88 | 0.89 |