You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/deepseek/benchmark.py

272 lines
11 KiB

# modified from mixtral benchmark
import argparse
import resource
import time
import warnings
from contextlib import nullcontext
import torch
import torch.distributed as dist
from data_utils import RandomDataset
from model_utils import format_numel_str, get_model_numel
from performance_evaluator import PerformanceEvaluator, get_profile_context
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCausalLM
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import MoeHybridParallelPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.shardformer import PipelineGradientCheckpointConfig
warnings.filterwarnings("ignore")
# ==============================
# Constants
# ==============================
# We have lots of llamas for your choice!
MODEL_CONFIGS = {
"100m": lambda: AutoConfig.from_pretrained(
"deepseek-ai/deepseek-moe-16b-base",
max_position_embeddings=4096,
num_hidden_layers=1,
num_attention_heads=32,
intermediate_size=512,
moe_intermediate_size=128,
hidden_size=512,
n_routed_experts=8,
n_shared_experts=4,
num_experts_per_tok=2,
first_k_dense_replace=0,
attn_implementation="flash_attention_2",
trust_remote_code=True,
),
"7b": lambda: AutoConfig.from_pretrained(
"deepseek-ai/deepseek-moe-16b-base",
max_position_embeddings=4096,
num_hidden_layers=13,
attn_implementation="flash_attention_2",
trust_remote_code=True,
),
"14b": lambda: AutoConfig.from_pretrained(
"deepseek-ai/deepseek-moe-16b-base",
max_position_embeddings=4096,
num_hidden_layers=26,
attn_implementation="flash_attention_2",
trust_remote_code=True,
),
}
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=str, default="100m", help="Model configuration")
parser.add_argument(
"-p",
"--plugin",
choices=["3d"],
default="3d",
help="Choose which plugin to use",
)
parser.add_argument("-b", "--batch_size", type=int, default=1, help="Batch size")
parser.add_argument("-s", "--num_steps", type=int, default=5, help="Number of steps to run")
parser.add_argument("-i", "--ignore_steps", type=int, default=2, help="Number of steps to ignore")
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing")
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length")
parser.add_argument(
"-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto"
)
parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb")
parser.add_argument("-x", "--xformers", action="store_true", help="Use xformers")
parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini")
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini")
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini")
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size")
parser.add_argument("--ep", type=int, default=1, help="Expert parallel size")
parser.add_argument("--sp", type=int, default=1, help="Sequence parallel size")
parser.add_argument("--extra_dp", type=int, default=1, help="Extra data parallel size, used for Gemini")
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size")
parser.add_argument("--mbs", type=int, default=1, help="Micro batch size of pipeline parallel")
parser.add_argument("--zero", type=int, default=1, help="Zero Stage when hybrid plugin is enabled")
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False)
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved"])
parser.add_argument("--n_chunks", default=1, help="number of model chunks", type=eval)
parser.add_argument("--profile", action="store_true", help="Profile the code")
parser.add_argument(
"--nsys",
action="store_true",
help="Use nsys for profiling. \
You should put something like this before colossalai launch: \
nsys profile -w true -t cuda,cudnn,cublas -s cpu --capture-range=cudaProfilerApi --capture-range-end=stop --cudabacktrace=true -x true --python-backtrace=cuda -o prof_out",
)
parser.add_argument("--disable-async-reduce", action="store_true", help="Disable the asynchronous reduce operation")
parser.add_argument("--prefetch_num", type=int, default=0, help="chunk prefetch max number")
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--use_fp8_comm", action="store_true", default=False, help="for using fp8 during communication")
parser.add_argument("--use_fp8", action="store_true", default=False, help="for using fp8 linear")
parser.add_argument("--overlap_allgather", action="store_true")
parser.add_argument(
"--sp_mode",
default="all_to_all",
choices=["all_to_all"],
help="Sequence parallelism mode",
)
parser.add_argument("--debug", action="store_true", help="Enable debug mode")
args = parser.parse_args()
colossalai.launch_from_torch()
coordinator = DistCoordinator()
# ckpt config for LLaMA3-70B on 64 H100 GPUs
hybrid_kwargs = (
{
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(
num_ckpt_layers_per_stage=[19, 19, 19, 13],
),
"num_layers_per_stage": [19, 20, 20, 21],
"pp_style": "interleaved",
}
if args.custom_ckpt
else {}
)
# ==============================
# Initialize Booster
# ==============================
if args.plugin == "3d":
plugin = MoeHybridParallelPlugin(
ep_size=args.ep,
tp_size=args.tp,
pp_size=args.pp,
pp_style=args.pp_style,
num_model_chunks=args.n_chunks,
zero_stage=args.zero,
sp_size=args.sp,
sequence_parallelism_mode=args.sp_mode,
enable_sequence_parallelism=args.sp > 1,
enable_fused_normalization=torch.cuda.is_available(),
enable_flash_attention=args.xformers,
microbatch_size=args.mbs,
precision="bf16",
enable_metadata_cache=not args.no_cache,
overlap_allgather=args.overlap_allgather,
use_fp8=args.use_fp8,
fp8_communication=args.use_fp8_comm,
**hybrid_kwargs,
)
else:
raise ValueError(f"Unknown plugin {args.plugin}")
booster = Booster(plugin=plugin)
# ==============================
# Initialize Dataset and Dataloader
# ==============================
dp_size = getattr(plugin, "dp_size", coordinator.world_size)
config = MODEL_CONFIGS[args.config]()
torch.cuda.manual_seed(42)
dataset = RandomDataset(
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size
)
dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, seed=42)
# ==============================
# Initialize Model and Optimizer
# ==============================
init_ctx = (
LazyInitContext(default_device=get_accelerator().get_current_device())
if isinstance(plugin, MoeHybridParallelPlugin)
else nullcontext()
)
with init_ctx:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True).to(torch.bfloat16)
if args.grad_checkpoint:
model.gradient_checkpointing_enable()
model_numel = get_model_numel(model)
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
performance_evaluator = PerformanceEvaluator(
model_numel,
model.config.num_hidden_layers,
model.config.hidden_size,
model.config.vocab_size,
args.grad_checkpoint,
args.ignore_steps,
dp_world_size=dp_size,
)
optimizer = HybridAdam(model.parameters())
torch.set_default_dtype(torch.bfloat16)
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
torch.set_default_dtype(torch.float)
coordinator.print_on_master(
f"Booster init max CUDA memory: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB"
)
coordinator.print_on_master(
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB"
)
with get_profile_context(
args.profile,
args.ignore_steps,
1, # avoid creating massive log files
save_dir=f"profile/{time.strftime('%H:%M', time.localtime())}-{args.plugin}-llama-{args.config}",
nsys=args.nsys,
) as prof: # , distributed_debug_mode(10, enable=True):
if isinstance(plugin, MoeHybridParallelPlugin) and args.pp > 1:
data_iter = iter(dataloader)
for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()):
performance_evaluator.on_step_start(step)
outputs = booster.execute_pipeline(
data_iter,
model,
criterion=lambda outputs, inputs: outputs[0],
optimizer=optimizer,
return_loss=True,
)
loss = outputs["loss"]
if dist.get_rank() == dist.get_world_size() - 1:
print(f"Step {step} loss: {loss}")
optimizer.step()
optimizer.zero_grad()
performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length))
prof.step()
print(f"rank {dist.get_rank()} step {step} passed")
else:
for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())):
performance_evaluator.on_step_start(step)
outputs = model(**batch)
loss = outputs[0]
del outputs # free memory
if dist.get_rank() == dist.get_world_size() - 1:
print(f"Step {step} loss: {loss}")
booster.backward(loss, optimizer)
optimizer.step()
optimizer.zero_grad()
performance_evaluator.on_step_end(**batch)
prof.step()
performance_evaluator.on_fit_end()
coordinator.print_on_master(f"Max CUDA memory usage: {get_accelerator().max_memory_allocated()/1024**2:.2f} MB")
if __name__ == "__main__":
main()