You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/bert/finetune.py

336 lines
12 KiB

import argparse
from typing import Callable, List, Union
import evaluate
import torch
import torch.distributed as dist
import torch.nn as nn
from data import GLUEDataBuilder
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
AlbertForSequenceClassification,
AutoConfig,
BertForSequenceClassification,
get_linear_schedule_with_warmup,
)
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
# ==============================
# Prepare Hyperparameters
# ==============================
NUM_EPOCHS = 3
BATCH_SIZE = 32
LEARNING_RATE = 2.4e-5
WEIGHT_DECAY = 0.01
WARMUP_FRACTION = 0.1
output_transform_fn = lambda x: x
criterion = lambda x: x.loss
def move_to_cuda(batch):
return {k: v.cuda() for k, v in batch.items()}
@torch.no_grad()
def evaluate_model(
model: nn.Module,
criterion,
test_dataloader: Union[DataLoader, List[DataLoader]],
num_labels: int,
task_name: str,
eval_splits: List[str],
booster: Booster,
coordinator: DistCoordinator,
):
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
model.eval()
def evaluate_subset(dataloader: DataLoader):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_device = use_pipeline and booster.plugin.stage_manager.is_last_stage(ignore_chunk=True)
accum_loss = torch.zeros(1, device=get_accelerator().get_current_device())
for batch in dataloader:
batch = move_to_cuda(batch)
labels = batch["labels"]
if use_pipeline:
pg_mesh = booster.plugin.pg_mesh
pp_group = booster.plugin.pp_group
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
current_rank = dist.get_rank()
batch = iter([batch])
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
if is_pp_last_device:
logits = outputs["outputs"]["logits"]
val_loss = outputs["loss"]
accum_loss.add_(val_loss)
if num_labels > 1:
preds = torch.argmax(logits, axis=1)
elif num_labels == 1:
preds = logits.squeeze()
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(predictions=preds, references=labels)
elif current_rank in current_pp_group_ranks:
object_list = [None, None]
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(
predictions=object_list[0].to(get_accelerator().get_current_device()), references=labels
)
accum_loss.add_(object_list[1].to(get_accelerator().get_current_device()))
else:
batch = move_to_cuda(batch)
outputs = model(**batch)
val_loss, logits = outputs[:2]
accum_loss.add_(val_loss)
if num_labels > 1:
preds = torch.argmax(logits, axis=1)
elif num_labels == 1:
preds = logits.squeeze()
metric.add_batch(predictions=preds, references=labels)
results = metric.compute()
dist.all_reduce(accum_loss.div_(len(dataloader)))
if coordinator.is_master() and results is not None:
results["loss"] = accum_loss.item() / coordinator.world_size
return results
if isinstance(test_dataloader, DataLoader):
return evaluate_subset(test_dataloader)
else:
assert len(test_dataloader) == len(eval_splits)
final_results = {}
for split, sub_loader in zip(eval_splits, test_dataloader):
results = evaluate_subset(sub_loader)
final_results.update({f"{k}_{split}": v for k, v in results.items()})
return final_results
def train_epoch(
epoch: int,
model: nn.Module,
optimizer: Optimizer,
_criterion: Callable,
lr_scheduler: LRScheduler,
train_dataloader: DataLoader,
booster: Booster,
coordinator: DistCoordinator,
):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_device = use_pipeline and booster.plugin.stage_manager.is_last_stage(ignore_chunk=True)
print_flag = (not use_pipeline and coordinator.is_master()) or (use_pipeline and is_pp_last_device)
total_step = len(train_dataloader)
model.train()
optimizer.zero_grad()
train_dataloader_iter = iter(train_dataloader)
with tqdm(range(total_step), desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]", disable=not print_flag) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
train_dataloader_iter, model, _criterion, optimizer, return_loss=True
)
# Backward and optimize
if is_pp_last_device:
loss = outputs["loss"]
pbar.set_postfix({"loss": loss.item()})
else:
data = next(train_dataloader_iter)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
parser.add_argument(
"-p",
"--plugin",
type=str,
default="torch_ddp",
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero", "hybrid_parallel", "torch_fsdp"],
help="plugin to use",
)
parser.add_argument(
"--model_type",
type=str,
default="bert",
help="bert or albert",
)
parser.add_argument("--target_f1", type=float, default=None, help="target f1 score. Raise exception if not reached")
parser.add_argument("--use_lazy_init", type=bool, default=False, help="for initiating lazy init context")
parser.add_argument("--use_fp8_comm", type=bool, default=False, help="for using fp8 during communication")
args = parser.parse_args()
if args.model_type == "bert":
model_name = "bert-base-uncased"
elif args.model_type == "albert":
model_name = "albert-xxlarge-v2"
else:
raise RuntimeError
# ==============================
# Launch Distributed Environment
# ==============================
colossalai.launch_from_torch(seed=42)
coordinator = DistCoordinator()
lr = LEARNING_RATE * coordinator.world_size
# ==============================
# Instantiate Plugin and Booster
# ==============================
booster_kwargs = {}
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin(fp8_communication=args.use_fp8_comm)
elif args.plugin == "gemini":
plugin = GeminiPlugin(initial_scale=2**5, fp8_communication=args.use_fp8_comm)
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == "hybrid_parallel":
# modify the param accordingly for finetuning test cases
plugin = HybridParallelPlugin(
tp_size=1,
pp_size=2,
num_microbatches=None,
pp_style="interleaved",
num_model_chunks=2,
microbatch_size=16,
enable_all_optimization=True,
zero_stage=1,
precision="fp16",
initial_scale=1,
fp8_communication=args.use_fp8_comm,
)
elif args.plugin == "torch_fsdp":
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from colossalai.booster.plugin import TorchFSDPPlugin
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
),
fp8_communication=args.use_fp8_comm,
)
booster = Booster(plugin=plugin, **booster_kwargs)
# ==============================
# Prepare Dataloader
# ==============================
data_builder = GLUEDataBuilder(
model_name, plugin, args.task, train_batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE
)
train_dataloader = data_builder.train_dataloader()
test_dataloader = data_builder.test_dataloader()
# ====================================
# Prepare model, optimizer
# ====================================
# bert pretrained model
cfg = AutoConfig.from_pretrained(model_name, num_labels=data_builder.num_labels)
if model_name == "bert-base-uncased":
model = BertForSequenceClassification.from_pretrained(model_name, config=cfg).cuda()
elif model_name == "albert-xxlarge-v2":
model = AlbertForSequenceClassification.from_pretrained(model_name, config=cfg)
else:
raise RuntimeError
# optimizer
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": WEIGHT_DECAY,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
# lr scheduler
total_steps = len(train_dataloader) * NUM_EPOCHS
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_steps,
)
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
# ==============================
# Boost with ColossalAI
# ==============================
model, optimizer, _criterion, _, lr_scheduler = booster.boost(
model, optimizer, criterion=_criterion, lr_scheduler=lr_scheduler
)
# ==============================
# Train model
# ==============================
for epoch in range(NUM_EPOCHS):
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, train_dataloader, booster, coordinator)
results = evaluate_model(
model,
_criterion,
test_dataloader,
data_builder.num_labels,
args.task,
data_builder.eval_splits,
booster,
coordinator,
)
if coordinator.is_master():
print(results)
if args.target_f1 is not None and "f1" in results:
assert results["f1"] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
if __name__ == "__main__":
main()