mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.3 KiB
76 lines
2.3 KiB
import torch |
|
import triton |
|
from vllm._C import ops |
|
|
|
from colossalai.kernel.kernel_loader import InferenceOpsLoader |
|
from colossalai.kernel.triton import rotary_embedding |
|
|
|
inference_ops = InferenceOpsLoader().load() |
|
|
|
BATCH = 16 |
|
configs = [ |
|
triton.testing.Benchmark( |
|
x_names=["num_tokens"], |
|
x_vals=[2**i for i in range(4, 12)], |
|
line_arg="provider", |
|
line_vals=["triton_func", "colossal_cuda_func", "vllm_cuda_func"], |
|
line_names=["triton_func", "colossal_cuda_func", "vllm_cuda_func"], |
|
styles=[("red", "-"), ("blue", "-"), ("yellow", "-")], |
|
ylabel="ms", |
|
plot_name=f"rotary_emb-batch-{BATCH}", |
|
args={"num_kv_heads": 16}, |
|
) |
|
] |
|
|
|
|
|
def torch_rotary_emb(x, cos, sin): |
|
seq_len, h, dim = x.shape |
|
x0 = x[:, :, 0 : dim // 2] |
|
x1 = x[:, :, dim // 2 : dim] |
|
cos = cos.view((seq_len, 1, dim // 2)) |
|
sin = sin.view((seq_len, 1, dim // 2)) |
|
o0 = x0 * cos - x1 * sin |
|
o1 = x0 * sin + x1 * cos |
|
return torch.cat((o0, o1), dim=-1) |
|
|
|
|
|
@triton.testing.perf_report(configs) |
|
def benchmark_rotary_emb( |
|
provider: str, |
|
num_tokens: int, |
|
num_kv_heads: int, |
|
): |
|
warmup = 10 |
|
rep = 100 |
|
|
|
head_dim = 128 |
|
dtype = torch.float16 |
|
q_shape = (num_tokens, num_kv_heads, head_dim) |
|
q = -2.3 + 0.5 * torch.randn(q_shape, dtype=dtype, device="cuda") |
|
k_shape = (num_tokens, num_kv_heads, head_dim) |
|
k = -2.3 + 0.5 * torch.randn(k_shape, dtype=dtype, device="cuda") |
|
cos_shape = (4096, head_dim // 2) |
|
cos = -1.2 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") |
|
sin = -2.0 + 0.5 * torch.randn(cos_shape, dtype=dtype, device="cuda") |
|
|
|
cos_sin = torch.stack((cos, sin), dim=1).contiguous() |
|
|
|
positions = torch.arange(num_tokens).cuda() |
|
|
|
if provider == "triton_func": |
|
fn = lambda: rotary_embedding(q, k, cos, sin) |
|
elif provider == "colossal_cuda_func": |
|
fn = lambda: inference_ops.rotary_embedding(q, k, cos, sin) |
|
elif provider == "vllm_cuda_func": |
|
q = q.view(num_tokens, -1) |
|
k = k.view(num_tokens, -1) |
|
fn = lambda: ops.rotary_embedding(positions, q, k, head_dim, cos_sin, True) |
|
else: |
|
raise ValueError("Undefined provider") |
|
|
|
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) |
|
return ms |
|
|
|
|
|
if __name__ == "__main__": |
|
benchmark_rotary_emb.run(save_path=".", print_data=True)
|
|
|