mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
5.4 KiB
133 lines
5.4 KiB
import torch |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
|
from colossalai.inference.modeling.layers.attention import PagedAttention |
|
from colossalai.kernel.triton import context_attention_unpadded |
|
from colossalai.utils import get_current_device |
|
from tests.test_infer.test_kernels.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref |
|
|
|
try: |
|
import triton # noqa |
|
|
|
except ImportError: |
|
print("please install triton from https://github.com/openai/triton") |
|
|
|
HEAD_DIM = 32 |
|
BATCH = 16 |
|
BLOCK_SIZE = 32 |
|
SAME_LEN = True |
|
WARM_UPS = 10 |
|
REPS = 100 |
|
configs = [ |
|
triton.testing.Benchmark( |
|
x_names=["KV_LEN"], |
|
x_vals=[2**i for i in range(8, 13)], |
|
# x_vals=[x for x in range(256, 8192, 256)], |
|
line_arg="provider", |
|
line_vals=["torch", "triton", "triton_new_klayout"], |
|
line_names=["Torch", "Triton", "Triton_new_klayout"], |
|
styles=[("red", "-"), ("blue", "-"), ("green", "-")], |
|
ylabel="ms", |
|
plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}", |
|
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1}, |
|
) |
|
] |
|
|
|
|
|
@triton.testing.perf_report(configs) |
|
def bench_kernel( |
|
bsz, |
|
KV_LEN, |
|
provider, |
|
block_size: int, |
|
kv_group_num: int, |
|
same_context_len: bool, |
|
): |
|
num_attn_heads = 16 |
|
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size) |
|
max_seq_len = block_size * max_num_blocks_per_seq |
|
|
|
num_kv_heads = num_attn_heads // kv_group_num |
|
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads." |
|
dtype = torch.float16 |
|
device = get_current_device() |
|
|
|
if same_context_len: |
|
context_lengths = torch.tensor([max_seq_len for _ in range(bsz)], dtype=torch.int32, device=device) |
|
else: |
|
context_lengths = torch.randint(low=1, high=max_seq_len, size=(bsz,), dtype=torch.int32, device=device) |
|
num_tokens = torch.sum(context_lengths).item() |
|
|
|
qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, HEAD_DIM) |
|
qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5) |
|
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2) |
|
q_unpad = q_unpad.contiguous() |
|
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2( |
|
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device |
|
) |
|
block_tables = block_tables.to(device=device) |
|
|
|
quantiles = [0.5, 0.2, 0.8] |
|
if provider == "torch": |
|
q_padded = PagedAttention.pad_and_reshape(q_unpad, context_lengths, max_seq_len, num_attn_heads, HEAD_DIM) |
|
k_padded = PagedAttention.pad_and_reshape(k_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM) |
|
v_padded = PagedAttention.pad_and_reshape(v_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM) |
|
q_padded, k_padded, v_padded = ( |
|
q_padded.to(device=device), |
|
k_padded.to(device=device), |
|
v_padded.to(device=device), |
|
) |
|
q_padded = q_padded.transpose(1, 2) |
|
k_padded = PagedAttention.repeat_kv(k_padded.transpose(1, 2), kv_group_num) |
|
v_padded = PagedAttention.repeat_kv(v_padded.transpose(1, 2), kv_group_num) |
|
# This benchmark ignores the padding mask. *Only* use the-same-length inputs for benchmarkings |
|
attn_mask = AttentionMaskConverter._make_causal_mask( |
|
(bsz, max_seq_len), q_padded.dtype, q_padded.device, past_key_values_length=0 |
|
) |
|
attn_mask = attn_mask.to(device=q_padded.device) |
|
fn = lambda: torch_attn_ref( |
|
q_padded, |
|
k_padded, |
|
v_padded, |
|
attn_mask, |
|
bsz, |
|
max_seq_len, |
|
max_seq_len, |
|
num_attn_heads, |
|
num_kv_heads, |
|
HEAD_DIM, |
|
) |
|
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles) |
|
elif provider == "triton": |
|
k_cache_triton = torch.zeros_like(k_cache_ref) |
|
v_cache_triton = torch.zeros_like(v_cache_ref) |
|
fn = lambda: context_attention_unpadded( |
|
q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size |
|
) |
|
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles) |
|
elif provider == "triton_new_klayout": |
|
# NOTE New kcache layout (num_blocks, num_kv_heads, head_dim // x, block_size, x) |
|
# to be applied around the cuda and triton kernels. |
|
# Here we want to make sure it does not cause downgrade in performance. |
|
x = 16 // torch.tensor([], dtype=dtype).element_size() |
|
k_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, HEAD_DIM // x, block_size, x) |
|
k_cache_triton = torch.zeros(size=k_cache_shape, dtype=dtype, device=device) |
|
v_cache_triton = torch.zeros_like(v_cache_ref) |
|
fn = lambda: context_attention_unpadded( |
|
q_unpad, |
|
k_unpad, |
|
v_unpad, |
|
k_cache_triton, |
|
v_cache_triton, |
|
context_lengths, |
|
block_tables, |
|
block_size, |
|
use_new_kcache_layout=True, |
|
) |
|
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles) |
|
|
|
return ms, min_ms, max_ms |
|
|
|
|
|
if __name__ == "__main__": |
|
bench_kernel.run(save_path=".", print_data=True)
|
|
|