mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
3.4 KiB
86 lines
3.4 KiB
import argparse |
|
|
|
|
|
def parse_demo_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
type=str, |
|
default="google/vit-base-patch16-224", |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--output_path", type=str, default="./output_model", help="The path of your saved model after finetuning." |
|
) |
|
parser.add_argument( |
|
"--plugin", |
|
type=str, |
|
default="gemini", |
|
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'.", |
|
) |
|
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epochs.") |
|
parser.add_argument( |
|
"--batch_size", type=int, default=32, help="Batch size (per dp group) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--tp_size", |
|
type=int, |
|
default=1, |
|
help="The size along tensor parallel dimension, only be used when enabling hybrid parallel.", |
|
) |
|
parser.add_argument( |
|
"--pp_size", |
|
type=int, |
|
default=1, |
|
help="The size along pipeline parallel dimension, only be used when enabling hybrid parallel.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=3e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--warmup_ratio", type=float, default=0.3, help="Ratio of warmup steps against total training steps." |
|
) |
|
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay to use.") |
|
parser.add_argument("--grad_checkpoint", type=bool, default=True, help="Whether to use gradient checkpointing.") |
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def parse_benchmark_args(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_name_or_path", |
|
type=str, |
|
default="google/vit-base-patch16-224", |
|
help="Path to a pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--plugin", |
|
type=str, |
|
default="gemini", |
|
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'.", |
|
) |
|
parser.add_argument( |
|
"--batch_size", type=int, default=8, help="Batch size (per dp group) for the training dataloader." |
|
) |
|
parser.add_argument("--num_labels", type=int, default=10, help="Number of labels for classification.") |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-5, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") |
|
parser.add_argument("--grad_checkpoint", type=bool, default=True, help="Whether to use gradient checkpointing.") |
|
parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.") |
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") |
|
parser.add_argument("--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB).") |
|
args = parser.parse_args() |
|
|
|
return args
|
|
|