Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

280 lines
11 KiB

import math
import os
import time
from functools import partial
import torch
from arguments import parse_args
from evaluation import evaluate
from loss import LossForPretraining
from nvidia_bert_dataset_provider import NvidiaBertDatasetProvider
from pretrain_utils import get_lr_scheduler, get_model, get_optimizer, save_ckpt
from tqdm import tqdm
from transformers import AutoTokenizer
from utils.exp_util import get_mem_info, get_tflops, log_args, throughput_calculator
from utils.global_vars import get_tensorboard_writer, get_timers, set_global_variables
from utils.logger import Logger
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.context import ParallelMode
from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper
from colossalai.tensor import ProcessGroup, ShardSpec
from colossalai.utils.model.colo_init_context import ColoInitContext
def main():
args = parse_args()
launch_time = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
logger = Logger(os.path.join(args.log_path, launch_time), cuda=torch.cuda.is_available(), debug=args.vscode_debug)
if args.vscode_debug:
colossalai.launch(
rank=args.rank, world_size=args.world_size, host=args.host, port=args.port, backend=args.backend
)
args.local_rank = -1
args.log_interval = 1
else:
colossalai.launch_from_torch() # args.colossal_config
args.local_rank = int(os.environ["LOCAL_RANK"])
logger.info(
f"launch_from_torch, world size: {torch.distributed.get_world_size()} | "
+ f"ParallelMode.MODEL: {ParallelMode.MODEL} | ParallelMode.DATA: {ParallelMode.DATA} | ParallelMode.TENSOR: {ParallelMode.TENSOR}"
)
log_args(logger, args)
args.tokenizer = tokenizer
args.logger = logger
set_global_variables(launch_time, args.tensorboard_path)
world_size = torch.distributed.get_world_size()
get_accelerator().get_current_device()
# build model, optimizer and criterion
if args.distplan.startswith("CAI"):
# all param must use the same process group.
world_size = torch.distributed.get_world_size()
shard_pg = ProcessGroup(tp_degree=world_size) if args.shardinit else None
default_dist_spec = ShardSpec([-1], [world_size]) if args.shardinit else None
if args.shardinit and args.distplan != "CAI_Gemini":
raise RuntimeError("You can only use shardinit with CAI_Gemini")
# build GPT model
with ColoInitContext(
device=get_accelerator().get_current_device(),
dtype=torch.half,
default_dist_spec=default_dist_spec,
default_pg=shard_pg,
):
config, model, numel = get_model(args, logger)
# assign running configurations
gemini_config = None
if args.distplan.startswith("CAI_ZeRO"):
optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True)
elif args.distplan == "CAI_Gemini":
gemini_config = dict(
strict_ddp_mode=args.tp_degree == 1,
device=get_accelerator().get_current_device(),
placement_policy=args.placement,
pin_memory=True,
hidden_dim=model.config.hidden_size,
search_range_m=128,
)
optim_config = dict(gpu_margin_mem_ratio=0.0)
else:
raise RuntimeError
# build a highly optimized gpu/cpu optimizer
optimizer = get_optimizer(model, lr=args.lr)
if args.distplan == "CAI_ZeRO1":
zero_stage = 1
elif args.distplan == "CAI_ZeRO2":
zero_stage = 2
elif args.distplan == "CAI_Gemini":
zero_stage = 3
else:
raise RuntimeError
# wrap your model and optimizer
model = zero_model_wrapper(model, zero_stage, gemini_config)
optimizer = zero_optim_wrapper(model, optimizer, optim_config=optim_config)
logger.info(get_mem_info(prefix="After init optim, "))
else:
config, model, numel = get_model(args, logger)
logger.info("no_zero")
if torch.distributed.get_rank() == 0:
os.mkdir(os.path.join(args.ckpt_path, launch_time))
logger.info(f"Model numel: {numel}")
get_tflops_func = partial(get_tflops, numel, args.train_micro_batch_size_per_gpu, args.max_seq_length)
# 144003367 is is the length of the entire dataset
# len(dataloader)
steps_per_epoch = (
144003367
// world_size
// args.train_micro_batch_size_per_gpu
// args.gradient_accumulation_steps
// args.refresh_bucket_size
)
total_steps = steps_per_epoch * args.epoch
lr_scheduler = get_lr_scheduler(optimizer, total_steps=total_steps, last_epoch=-1)
start_epoch = 0
start_shard = 0
global_step = 0
if args.resume_train:
assert os.path.exists(args.load_optimizer_lr)
o_l_state_dict = torch.load(args.load_optimizer_lr, map_location="cpu")
o_l_state_dict["lr_scheduler"]["last_epoch"] = o_l_state_dict["lr_scheduler"]["last_epoch"] - 1
optimizer.load_state_dict(o_l_state_dict["optimizer"])
# o_l_state_dict['lr_scheduler']['last_epoch']
lr_scheduler = get_lr_scheduler(
optimizer, total_steps=total_steps, last_epoch=o_l_state_dict["lr_scheduler"]["last_epoch"]
)
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda(f"cuda:{torch.cuda.current_device()}")
# if you want delete the above three code, must move the model to gpu. Because in optimizer.step()
lr_scheduler.load_state_dict(o_l_state_dict["lr_scheduler"])
start_epoch = o_l_state_dict["epoch"]
start_shard = o_l_state_dict["shard"] + 1
# global_step = o_l_state_dict['global_step'] + 1
logger.info(
f"resume from epoch {start_epoch} shard {start_shard} step {lr_scheduler.last_epoch} lr {lr_scheduler.get_last_lr()[0]}"
)
criterion = LossForPretraining(config.vocab_size)
# build dataloader
pretrain_dataset_provider = NvidiaBertDatasetProvider(args)
logger.info(get_mem_info(prefix="After init model, "))
eval_loss = 0
train_loss = 0
timers = get_timers()
timers("interval_time").start()
timers("epoch_time").start()
timers("shard_time").start()
for epoch in range(start_epoch, args.epoch):
for shard in range(start_shard, len(os.listdir(args.data_path_prefix))):
dataset_iterator, total_length = pretrain_dataset_provider.get_shard(shard)
# pretrain_dataset_provider.prefetch_shard(shard + 1) # may cause cpu memory overload
if torch.distributed.get_rank() == 0:
iterator_data = tqdm(
enumerate(dataset_iterator),
total=(total_length // args.train_micro_batch_size_per_gpu // world_size),
colour="cyan",
smoothing=1,
)
else:
iterator_data = enumerate(dataset_iterator)
model.train()
for step, batch_data in iterator_data:
# batch_data = pretrain_dataset_provider.get_batch(batch_index)
input_ids = batch_data[0].cuda(f"cuda:{torch.cuda.current_device()}")
attention_mask = batch_data[1].cuda(f"cuda:{torch.cuda.current_device()}")
token_type_ids = batch_data[2].cuda(f"cuda:{torch.cuda.current_device()}")
mlm_label = batch_data[3].cuda(f"cuda:{torch.cuda.current_device()}")
# nsp_label = batch_data[5].cuda()
output = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
loss = criterion(output.logits, mlm_label)
pretrain_dataset_provider.prefetch_batch()
optimizer.backward(loss)
train_loss += loss.float().item()
# if (step + 1) % args.accumulation_step == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
global_step += 1
if global_step % args.log_interval == 0 and global_step != 0 and torch.distributed.get_rank() == 0:
elapsed_time = timers("interval_time").elapsed(reset=False)
elapsed_time_per_iteration = elapsed_time / global_step
samples_per_sec, tflops, approx_parameters_in_billions = throughput_calculator(
numel, args, config, elapsed_time, global_step, world_size
)
cur_loss = train_loss / args.log_interval
current_lr = lr_scheduler.get_last_lr()[0]
log_str = (
f"| epoch: {epoch} | shard: {shard} | step: {global_step} | lr {current_lr:.7f} | elapsed_time: {elapsed_time / 60 :.3f} minutes "
+ f"| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {math.exp(cur_loss):.3f} | TFLOPS: {get_tflops_func(elapsed_time_per_iteration):.3f} or {tflops:.3f}"
)
logger.info(log_str, print_=False)
if args.wandb:
tensorboard_log = get_tensorboard_writer()
tensorboard_log.log_train(
{
"lr": current_lr,
"loss": cur_loss,
"ppl": math.exp(cur_loss),
"mins_batch": elapsed_time_per_iteration,
},
global_step,
)
train_loss = 0
logger.info(f'epoch {epoch} shard {shard} has cost {timers("shard_time").elapsed() / 60 :.3f} mins')
logger.info("*" * 100)
eval_loss += evaluate(model, args, logger, global_step, criterion)
save_ckpt(
model,
optimizer,
lr_scheduler,
os.path.join(args.ckpt_path, launch_time, f"epoch-{epoch}_shard-{shard}_" + launch_time),
epoch,
shard,
global_step,
)
eval_loss /= len(os.listdir(args.data_path_prefix))
logger.info(
f'epoch {epoch} | shard_length {len(os.listdir(args.data_path_prefix))} | elapsed_time: {timers("epoch_time").elapsed() / 60 :.3f} mins'
+ f"eval_loss: {eval_loss} | ppl: {math.exp(eval_loss)}"
)
logger.info("-" * 100)
if args.wandb and torch.distributed.get_rank() == 0:
tensorboard_log = get_tensorboard_writer()
tensorboard_log.log_eval(
{
"all_eval_shard_loss": eval_loss,
},
epoch,
)
start_shard = 0
eval_loss = 0
pretrain_dataset_provider.release_shard()
logger.info("Congratulation, training has finished!!!")
if __name__ == "__main__":
main()