ColossalAI/colossalai/shardformer/modeling/deepseek_v3.py

386 lines
15 KiB
Python

from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from torch.nn import CrossEntropyLoss
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from colossalai.lazy import LazyInitContext
from colossalai.moe._operation import (
DPGradScalerIn,
DPGradScalerOut,
EPGradScalerIn,
EPGradScalerOut,
all_to_all_uneven,
)
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.layer.linear import ParallelModule
from colossalai.shardformer.shard.utils import set_tensors_to_none
from colossalai.tensor.moe_tensor.api import set_moe_tensor_ep_group
class EpDeepseekV3MoE(ParallelModule):
"""
A mixed expert module containing shared experts.
"""
def __init__(self, config):
raise RuntimeError(f"Please use `from_native_module` to create an instance of {self.__class__.__name__}")
def setup_process_groups(
self,
moe_dp_group: ProcessGroup,
ep_group: ProcessGroup,
):
assert moe_dp_group is not None
assert ep_group is not None
self.ep_size = dist.get_world_size(ep_group)
self.ep_rank = dist.get_rank(ep_group)
self.num_experts = self.config.n_routed_experts
assert self.num_experts % self.ep_size == 0
self.ep_group = ep_group
self.num_experts_per_ep = self.num_experts // self.ep_size
self.experts_per_rank = self.num_experts_per_ep
self.expert_start_idx = self.ep_rank * self.num_experts_per_ep
held_experts = self.experts[self.expert_start_idx : self.expert_start_idx + self.num_experts_per_ep]
set_tensors_to_none(self.experts, exclude=set(held_experts))
# setup moe_dp group
self.moe_dp_group = moe_dp_group
self.moe_dp_size = dist.get_world_size(moe_dp_group)
for p in self.experts.parameters():
set_moe_tensor_ep_group(p, ep_group)
@staticmethod
def from_native_module(
module,
moe_dp_group: ProcessGroup,
ep_group: ProcessGroup,
*args,
**kwargs,
) -> "EpDeepseekV3MoE":
if module.__class__.__name__ != "DeepseekV3MLP":
module.__class__ = EpDeepseekV3MoE
module.setup_process_groups(moe_dp_group, ep_group)
LazyInitContext.materialize(module)
return module
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
y = self.moe_forward(hidden_states, topk_idx, topk_weight).view(*orig_shape)
if self.config.n_shared_experts is not None:
y = y + self.shared_experts(identity)
return y
def moe_forward(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = topk_ids.view(-1).argsort()
sorted_tokens = x[idxs // topk_ids.shape[1]]
if self.ep_size > 1:
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
tokens_per_expert_group = tokens_per_expert.new_empty(tokens_per_expert.shape[0])
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert, group=self.ep_group)
output_splits = tokens_per_expert_group.view(self.ep_size, -1).sum(1).tolist()
input_split_sizes = tokens_per_ep_rank.tolist()
gathered_tokens, _ = all_to_all_uneven(sorted_tokens, input_split_sizes, output_splits, self.ep_group)
tokens_per_expert_post_gather = tokens_per_expert_group.view(self.ep_size, self.experts_per_rank).sum(dim=0)
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
s = 0
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
gatherd_idxs[s : s + k] = i % self.experts_per_rank
s += k
gatherd_idxs = gatherd_idxs.argsort()
sorted_tokens = gathered_tokens[gatherd_idxs]
tokens_per_expert = tokens_per_expert_post_gather
# moe-dp related code
activate_experts = tokens_per_expert_post_gather > 0
activate_experts = activate_experts.int()
dist.all_reduce(activate_experts, group=self.moe_dp_group)
# ep related code
sorted_tokens = EPGradScalerIn.apply(sorted_tokens, self.ep_size)
tokens_per_expert = tokens_per_expert.cpu().numpy()
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
# moe-dp related code
tokens_for_this_expert = DPGradScalerIn.apply(tokens_for_this_expert, self.moe_dp_size, activate_experts[i])
expert_out = expert(tokens_for_this_expert)
# moe-dp related code
expert_out = DPGradScalerOut.apply(expert_out, self.moe_dp_size, activate_experts[i])
outputs.append(expert_out)
start_idx = end_idx
if len(outputs) > 0:
outs = torch.cat(outputs, dim=0)
else:
assert sorted_tokens.numel() == 0, f"sorted_tokens: should be empty, but got {sorted_tokens.shape}"
outs = sorted_tokens
if self.ep_size > 1:
outs = EPGradScalerOut.apply(outs, self.ep_size)
new_x = torch.empty_like(outs)
new_x[gatherd_idxs] = outs
gathered_tokens, _ = all_to_all_uneven(new_x, output_splits, input_split_sizes, self.ep_group)
outs = gathered_tokens
new_x = torch.empty_like(outs)
new_x[idxs] = outs
final_out = (
(new_x.view(*topk_ids.shape, -1).type(topk_weight.dtype) * topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return final_out
def deepseek_v3_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
hidden_states_internal: Optional[torch.Tensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0)
if stage_manager is None or stage_manager.is_first_stage():
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
else:
inputs_embeds = hidden_states_internal
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
if stage_index is not None:
start_idx, end_idx = stage_index
else:
start_idx, end_idx = 0, len(self.layers)
for i, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and i > 0:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if stage_manager is None or stage_manager.is_last_stage():
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if stage_manager is not None and not stage_manager.is_last_stage():
return {
"hidden_states_internal": hidden_states,
}
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def deepseek_v3_for_causal_lm_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
hidden_states_internal: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
>>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = deepseek_v3_model_forward(
self.model,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
stage_index=stage_index,
hidden_states_internal=hidden_states_internal,
)
if stage_manager is not None and not stage_manager.is_last_stage():
return outputs
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)