mirror of https://github.com/hpcaitech/ColossalAI
106 lines
4.0 KiB
Python
106 lines
4.0 KiB
Python
import random
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
|
|
|
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
|
|
from colossalai.inference.core.rpc_engine import RPCInferenceEngine
|
|
from colossalai.inference.modeling.policy import NoPaddingLlamaModelInferPolicy
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
|
|
|
|
|
def setup_seed(seed):
|
|
torch.manual_seed(seed)
|
|
torch.random.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
|
|
|
|
def check_inference_engine(tp_size, use_engine=False, prompt_template=None, do_sample=True, policy=None):
|
|
setup_seed(20)
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
|
model = "meta-llama/Llama-2-7b-hf" # remote mode path
|
|
inputs = [
|
|
"介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,",
|
|
"介绍一下武汉,",
|
|
]
|
|
|
|
output_len = 38
|
|
top_p = 0.5
|
|
top_k = 50
|
|
|
|
if use_engine:
|
|
inference_config = InferenceConfig(
|
|
max_output_len=output_len,
|
|
prompt_template=prompt_template,
|
|
dtype="fp32",
|
|
use_cuda_kernel=True,
|
|
tp_size=tp_size,
|
|
)
|
|
inference_engine = RPCInferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy)
|
|
assert inference_engine.generation_config.max_new_tokens == output_len
|
|
inference_engine.add_request(prompts=inputs)
|
|
assert inference_engine.request_handler._has_waiting()
|
|
generation_config = GenerationConfig(
|
|
max_new_tokens=output_len, do_sample=do_sample, dtype="fp32", top_p=top_p, top_k=top_k
|
|
)
|
|
outputs = inference_engine.generate(generation_config=generation_config)
|
|
else:
|
|
if prompt_template:
|
|
# apply prompt template
|
|
inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs]
|
|
model = AutoModelForCausalLM.from_pretrained(model).cuda()
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
|
|
inputs = inputs.cuda()
|
|
generation_config = GenerationConfig(
|
|
do_sample=do_sample,
|
|
dtype="fp32",
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
max_new_tokens=output_len,
|
|
)
|
|
outputs = model.generate(inputs, generation_config=generation_config)
|
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
|
return outputs
|
|
|
|
|
|
def run_engine(tp_size, **kwargs):
|
|
return check_inference_engine(tp_size=tp_size, **kwargs)
|
|
|
|
|
|
@pytest.mark.largedist
|
|
@parameterize("prompt_template", [None, "llama"])
|
|
@parameterize("do_sample", [False])
|
|
@rerun_if_address_is_in_use()
|
|
def test_tp_engine(prompt_template, do_sample):
|
|
if torch.multiprocessing.get_start_method(allow_none=True) is None:
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
kwargs1 = {
|
|
"use_engine": True,
|
|
"prompt_template": prompt_template,
|
|
"do_sample": do_sample,
|
|
"policy": NoPaddingLlamaModelInferPolicy(),
|
|
}
|
|
|
|
kwargs2 = {"use_engine": False, "prompt_template": prompt_template, "do_sample": do_sample, "policy": None}
|
|
|
|
colossal_tp_1_output = run_engine(1, **kwargs1)
|
|
colossal_tp_2_output = run_engine(2, **kwargs1)
|
|
transformer_tp_1_output = run_engine(1, **kwargs2)
|
|
|
|
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output):
|
|
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}"
|
|
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.multiprocessing.set_start_method("spawn") # this code will not be ok for settings to fork to subprocess
|
|
test_tp_engine()
|