mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
302 lines
12 KiB
302 lines
12 KiB
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Splicing multiple pre-tokenized sequence data points
|
|
"""
|
|
|
|
import bisect
|
|
import random
|
|
import warnings
|
|
from copy import deepcopy
|
|
from typing import Any, Callable, Dict, Iterable, List, Tuple, Union
|
|
|
|
from datasets import dataset_dict
|
|
from torch.utils.data import ConcatDataset, Dataset, IterableDataset
|
|
from transformers import AutoTokenizer
|
|
from transformers.models.llama.tokenization_llama import LlamaTokenizer
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from .conversation import Conversation, default_conversation
|
|
|
|
logger = get_dist_logger()
|
|
|
|
IGNORE_INDEX = -100
|
|
|
|
DSType = Union[Dataset, ConcatDataset, dataset_dict.Dataset]
|
|
|
|
|
|
def supervised_tokenize_pretrain(
|
|
data_point: Dict[str, str], tokenizer: LlamaTokenizer, ignore_index: int = None, max_length: int = 4096
|
|
) -> Dict[str, Union[int, str, List[int]]]:
|
|
"""
|
|
A tokenization function to tokenize an original pretraining data point as following:
|
|
{"source": "", "target": "Beijing, the capital of the People's Republic of China, ...", "category": "geography"}
|
|
"""
|
|
assert tokenizer.add_bos_token is False and tokenizer.add_eos_token is False, (
|
|
"Initially set `tokenizer.add_bos_token` and `tokenizer.add_eos_token` to False, "
|
|
"add <bos> and <eos> manually later"
|
|
)
|
|
if ignore_index is None:
|
|
ignore_index = IGNORE_INDEX
|
|
|
|
source_text = data_point["source"] # `str`
|
|
target_text = data_point["target"] # `str`
|
|
is_null_source = len(source_text) == 0
|
|
|
|
source_text = tokenizer.bos_token + source_text
|
|
target_text += tokenizer.eos_token
|
|
sequence_text = source_text + target_text
|
|
|
|
tokenized = tokenizer([source_text, sequence_text])["input_ids"]
|
|
sequence_input_ids = tokenized[1]
|
|
sequence_labels = deepcopy(sequence_input_ids)
|
|
|
|
source_length = len(tokenized[0])
|
|
if not is_null_source:
|
|
sequence_labels[:source_length] = [ignore_index for _ in range(source_length)]
|
|
|
|
# sequence truncation.
|
|
if len(sequence_input_ids) > max_length:
|
|
sequence_input_ids = sequence_input_ids[:max_length]
|
|
sequence_labels = sequence_labels[:max_length]
|
|
|
|
return dict(
|
|
input_ids=sequence_input_ids,
|
|
labels=sequence_labels,
|
|
seq_length=len(sequence_input_ids),
|
|
seq_category=data_point["category"],
|
|
)
|
|
|
|
|
|
def supervised_tokenize_sft(
|
|
data_point: Dict[str, str],
|
|
tokenizer: AutoTokenizer,
|
|
conversation_template: Conversation = default_conversation,
|
|
ignore_index: int = None,
|
|
max_length: int = 4096,
|
|
) -> Dict[str, Union[int, str, List[int]]]:
|
|
"""
|
|
A tokenization function to tokenize an original supervised data point as following:
|
|
{"messages": [{"from": "human", "content": "xxx"}, {"from": "assistant", "content": "xxx"}]}
|
|
"""
|
|
assert tokenizer.add_bos_token is False and tokenizer.add_eos_token is False, (
|
|
"Initially set `tokenizer.add_bos_token` and `tokenizer.add_eos_token` to False, "
|
|
"add <bos> and <eos> manually later"
|
|
)
|
|
|
|
assert (
|
|
tokenizer.bos_token == conversation_template.seps[0] and tokenizer.eos_token == conversation_template.seps[1]
|
|
), "`bos_token` and `eos_token` should be the same with `conversation_template.seps`."
|
|
|
|
if ignore_index is None:
|
|
ignore_index = IGNORE_INDEX
|
|
|
|
messages = data_point["messages"]
|
|
template = deepcopy(conversation_template)
|
|
template.messages = []
|
|
|
|
for mess in messages:
|
|
from_str = mess["from"]
|
|
if from_str.lower() == "human":
|
|
from_str = template.roles[0]
|
|
elif from_str.lower() == "assistant":
|
|
from_str = template.roles[1]
|
|
else:
|
|
raise ValueError(f"Unsupported role {from_str.lower()}")
|
|
|
|
template.append_message(from_str, mess["content"])
|
|
|
|
if len(template.messages) % 2 != 0:
|
|
template.messages = template.messages[0:-1]
|
|
|
|
# `target_turn_index` is the number of turns which exceeds `max_length - 1` for the first time.
|
|
turns = [i for i in range(1, len(messages) // 2 + 1)]
|
|
target_turn_index = bisect.bisect_right(
|
|
turns,
|
|
max_length - 1,
|
|
key=lambda x: len(tokenizer([template.get_prompt(2 * x)], add_special_tokens=False)["input_ids"][0]),
|
|
)
|
|
|
|
# The tokenized length for first turn already exceeds `max_length - 1`.
|
|
if target_turn_index - 1 < 0:
|
|
return dict(
|
|
input_ids=None,
|
|
labels=None,
|
|
inputs_decode=None,
|
|
labels_decode=None,
|
|
seq_length=None,
|
|
seq_category=None,
|
|
)
|
|
|
|
target_turn = turns[target_turn_index - 1]
|
|
prompt = template.get_prompt(2 * target_turn)
|
|
tokenized = tokenizer([prompt], add_special_tokens=False)["input_ids"][0]
|
|
|
|
template.messages = template.messages[0 : 2 * target_turn]
|
|
|
|
starts = []
|
|
ends = []
|
|
gpt_bos = False if template.messages[0][0] == template.roles[0] else True
|
|
gpt_eos = False if template.messages[0][0] == template.roles[0] else True
|
|
|
|
for i, token_id in enumerate(tokenized):
|
|
if token_id == tokenizer.bos_token_id:
|
|
if gpt_bos:
|
|
starts.append(i)
|
|
gpt_bos = not gpt_bos
|
|
elif token_id == tokenizer.eos_token_id:
|
|
if gpt_eos:
|
|
ends.append(i)
|
|
gpt_eos = not gpt_eos
|
|
|
|
if len(starts) != target_turn or len(ends) != target_turn:
|
|
logger.info(
|
|
"Please check whether the tokenizer add additional `bos_token` and `eos_token`.\n\nOr the original message contains `bos_token` or `eos_token`."
|
|
)
|
|
return dict(
|
|
input_ids=None,
|
|
labels=None,
|
|
inputs_decode=None,
|
|
labels_decode=None,
|
|
seq_length=None,
|
|
seq_category=None,
|
|
)
|
|
|
|
tokenized = [tokenizer.bos_token_id] + tokenized
|
|
labels = [ignore_index] * len(tokenized)
|
|
for start, end in zip(starts, ends):
|
|
labels[start + 1 : end + 2] = tokenized[start + 1 : end + 2]
|
|
|
|
labels_decode = deepcopy(labels)
|
|
for i, z in enumerate(labels_decode):
|
|
if z == ignore_index:
|
|
labels_decode[i] = tokenizer.unk_token_id
|
|
|
|
# `inputs_decode` and `labels_decode` can be used to check whether the tokenization method is true.
|
|
return dict(
|
|
input_ids=tokenized,
|
|
labels=labels,
|
|
inputs_decode=tokenizer.decode(tokenized),
|
|
labels_decode=tokenizer.decode(labels_decode),
|
|
seq_length=len(tokenized),
|
|
seq_category=data_point["category"] if "category" in data_point else "None",
|
|
)
|
|
|
|
|
|
class ClosedToConstantLengthSplicedDataset(IterableDataset):
|
|
"""
|
|
Define an iterable dataset that returns a (close to) constant length data point spliced from multiple
|
|
original independent (pre-tokenized) data points.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset: DSType,
|
|
tokenizer: PreTrainedTokenizer,
|
|
max_length: int = 4096,
|
|
num_packed_sequences: int = 8,
|
|
fetch_sequence_func: Callable[[Any], Tuple[List[int], List[int]]] = None,
|
|
input_ids_field: str = "input_ids",
|
|
labels_field: str = "labels",
|
|
infinite: bool = False,
|
|
shuffle: bool = True,
|
|
error_strict: bool = False,
|
|
) -> None:
|
|
self.tokenizer = tokenizer
|
|
self.dataset = dataset
|
|
self.max_length = max_length
|
|
self.infinite = infinite
|
|
self.max_buffer_size = max_length * num_packed_sequences # e.g., 4096 * 16
|
|
self.shuffle = shuffle
|
|
|
|
# Callable[[Dict[str, Any]], Tuple[List[int], List[int]]],
|
|
# A function that fetch sequence input_ids and labels from the original data point
|
|
if fetch_sequence_func is None:
|
|
self.fetch_sequence_func = lambda data_point: (data_point[input_ids_field], data_point[labels_field])
|
|
else:
|
|
self.fetch_sequence_func = fetch_sequence_func
|
|
self.input_ids_field = input_ids_field
|
|
self.labels_field = labels_field
|
|
|
|
self.error_strict = error_strict
|
|
self.current_size = 0 # `int`, current packed data size.
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.dataset)
|
|
|
|
def __iter__(self) -> Iterable[Dict[str, List[int]]]:
|
|
iterator = iter(self.dataset)
|
|
more_data_points = True
|
|
while more_data_points is True:
|
|
buffer, buffer_len = [], 0
|
|
while True:
|
|
# ending condition.
|
|
if buffer_len >= self.max_buffer_size:
|
|
break
|
|
try:
|
|
# `Tuple[List[int], List[int]]`
|
|
seq_input_ids, seq_labels = self.fetch_sequence_func(next(iterator))
|
|
buffer.append({self.input_ids_field: seq_input_ids, self.labels_field: seq_labels})
|
|
buffer_len += len(buffer[-1][self.input_ids_field])
|
|
except StopIteration:
|
|
if self.infinite is True:
|
|
iterator = iter(self.dataset)
|
|
warnings.warn("The dataset reached end and the iterator is reset to the start.")
|
|
else:
|
|
more_data_points = False
|
|
break
|
|
examples = [] # `List[Dict[str, List[int]]]`, save buffered spliced data points.
|
|
spliced_input_ids, spliced_labels = [], [] # `List[int]`, `List[int]`
|
|
for i, data_point in enumerate(buffer):
|
|
# TODO(2023-09-18) check errors for each unspliced tokenized data point
|
|
seq_input_ids = data_point[self.input_ids_field]
|
|
seq_labels = data_point[self.labels_field]
|
|
# Handle special case:
|
|
# If the length of an original data point (i.e., input_ids length of a data point before splicing)
|
|
# exceeds `max_length`, truncate it.
|
|
if len(seq_input_ids) > self.max_length:
|
|
truncated_seq_input_ids = seq_input_ids[: self.max_length]
|
|
truncated_label_ids = seq_labels[: self.max_length]
|
|
if set(truncated_label_ids) == {IGNORE_INDEX}:
|
|
if self.error_strict is True:
|
|
raise ValueError(
|
|
f"Find an out-of-bounds length({len(seq_input_ids)}) data point "
|
|
f"with all label values as {IGNORE_INDEX}."
|
|
)
|
|
else:
|
|
warnings.warn(f"Filter an error truncated data point (labels all {IGNORE_INDEX})")
|
|
continue # Skip the current error data point.
|
|
spliced_data_point = {
|
|
self.input_ids_field: truncated_seq_input_ids,
|
|
self.labels_field: truncated_label_ids,
|
|
}
|
|
examples.append(spliced_data_point)
|
|
warnings.warn("Find a data point to be truncated.")
|
|
continue
|
|
|
|
# Pre action judgment.
|
|
if len(spliced_input_ids) + len(seq_input_ids) > self.max_length:
|
|
spliced_data_point = {
|
|
self.input_ids_field: spliced_input_ids,
|
|
self.labels_field: spliced_labels,
|
|
} # `Dict[str, List[int]]`
|
|
# Update.
|
|
spliced_input_ids, spliced_labels = [], []
|
|
spliced_input_ids.extend(seq_input_ids)
|
|
spliced_labels.extend(seq_labels)
|
|
examples.append(spliced_data_point)
|
|
else:
|
|
spliced_input_ids.extend(seq_input_ids)
|
|
spliced_labels.extend(seq_labels)
|
|
# For residual spliced data point at the end of the data set
|
|
if self.infinite is False and more_data_points is False and len(spliced_input_ids) > 0:
|
|
examples.append({self.input_ids_field: spliced_input_ids, self.labels_field: spliced_labels})
|
|
if self.shuffle:
|
|
random.shuffle(examples)
|
|
for spliced_data_point in examples:
|
|
# TODO(2023-09-18): check errors for each spliced tokenized data point.
|
|
self.current_size += 1
|
|
yield spliced_data_point
|