mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
5.3 KiB
152 lines
5.3 KiB
from typing import Any, List, OrderedDict
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import Tensor
|
|
from torch.distributed import ProcessGroup
|
|
from torch.testing import assert_close
|
|
from torch.utils._pytree import tree_flatten
|
|
|
|
|
|
def assert_equal(a: Tensor, b: Tensor):
|
|
assert torch.all(a == b), f"expected a and b to be equal but they are not, {a} vs {b}"
|
|
|
|
|
|
def assert_not_equal(a: Tensor, b: Tensor):
|
|
assert not torch.all(a == b), f"expected a and b to be not equal but they are, {a} vs {b}"
|
|
|
|
|
|
def assert_close_loose(a: Tensor, b: Tensor, rtol: float = 1e-3, atol: float = 1e-3):
|
|
assert_close(
|
|
a,
|
|
b,
|
|
rtol=rtol,
|
|
atol=atol,
|
|
)
|
|
|
|
|
|
def assert_equal_in_group(tensor: Tensor, process_group: ProcessGroup = None):
|
|
# all gather tensors from different ranks
|
|
world_size = dist.get_world_size(process_group)
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
|
|
# check if they are equal one by one
|
|
for i in range(world_size - 1):
|
|
a = tensor_list[i]
|
|
b = tensor_list[i + 1]
|
|
assert torch.all(a == b), f"expected tensors on rank {i} and {i + 1} to be equal but they are not, {a} vs {b}"
|
|
|
|
|
|
def check_state_dict_equal(
|
|
d1: OrderedDict,
|
|
d2: OrderedDict,
|
|
ignore_device: bool = True,
|
|
ignore_dtype: bool = False,
|
|
):
|
|
assert len(list(d1.keys())) == len(
|
|
list(d2.keys())
|
|
), f"Number of keys unequal: {len(list(d1.keys()))} vs {len(list(d2.keys()))}"
|
|
for k, v1 in d1.items():
|
|
assert k in d2
|
|
v2 = d2[k]
|
|
if isinstance(v1, dict):
|
|
assert isinstance(v2, dict)
|
|
check_state_dict_equal(v1, v2, ignore_device)
|
|
elif isinstance(v1, list):
|
|
assert isinstance(v2, list)
|
|
for v1_i, v2_i in zip(v1, v2):
|
|
if isinstance(v1_i, torch.Tensor):
|
|
assert isinstance(v2_i, torch.Tensor)
|
|
if not ignore_device:
|
|
v1_i = v1_i.to("cpu")
|
|
v2_i = v2_i.to("cpu")
|
|
if ignore_dtype:
|
|
v1_i = v1_i.to(v2_i.dtype)
|
|
assert_close_loose(v1_i, v2_i)
|
|
elif isinstance(v1_i, dict):
|
|
assert isinstance(v2_i, dict)
|
|
check_state_dict_equal(v1_i, v2_i, ignore_device)
|
|
else:
|
|
assert v1_i == v2_i, f"{v1_i} not equals to {v2_i}"
|
|
elif isinstance(v1, torch.Tensor):
|
|
assert isinstance(v2, torch.Tensor)
|
|
if not ignore_device:
|
|
v1 = v1.to("cpu")
|
|
v2 = v2.to("cpu")
|
|
if ignore_dtype:
|
|
v1 = v1.to(v2.dtype)
|
|
assert_close_loose(v1, v2)
|
|
else:
|
|
assert v1 == v2, f"{v1} not equals to {v2}"
|
|
|
|
|
|
def check_state_dict_equal_pytree(d1: OrderedDict, d2: OrderedDict, ignore_device: bool = True):
|
|
flat_d1, _ = tree_flatten(d1)
|
|
flat_d2, _ = tree_flatten(d2)
|
|
assert len(flat_d1) == len(flat_d2)
|
|
for v1, v2 in zip(flat_d1, flat_d2):
|
|
if isinstance(v1, torch.Tensor):
|
|
assert isinstance(v2, torch.Tensor)
|
|
if not ignore_device:
|
|
v1 = v1.to("cpu")
|
|
v2 = v2.to("cpu")
|
|
assert_close_loose(v1, v2)
|
|
else:
|
|
assert v1 == v2, f"{v1} not equals to {v2}"
|
|
|
|
|
|
def assert_hf_output_close(
|
|
out1: Any,
|
|
out2: Any,
|
|
ignore_keys: List[str] = None,
|
|
track_name: str = "",
|
|
atol=1e-5,
|
|
rtol=1e-5,
|
|
):
|
|
"""
|
|
Check if two outputs from huggingface are equal.
|
|
|
|
Args:
|
|
out1 (Any): the first output
|
|
out2 (Any): the second output
|
|
ignore_keys (List[str]): the keys to ignore when comparing two dicts
|
|
track_name (str): the name of the value compared, used to track the path
|
|
"""
|
|
if isinstance(out1, dict) and isinstance(out2, dict):
|
|
# if two values are dict
|
|
# we recursively check the keys
|
|
assert set(out1.keys()) == set(out2.keys())
|
|
for k in out1.keys():
|
|
if ignore_keys is not None and k in ignore_keys:
|
|
continue
|
|
assert_hf_output_close(
|
|
out1[k],
|
|
out2[k],
|
|
track_name=f"{track_name}.{k}",
|
|
ignore_keys=ignore_keys,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
elif isinstance(out1, (list, tuple)) and isinstance(out2, (list, tuple)):
|
|
# if two values are list
|
|
# we recursively check the elements
|
|
assert len(out1) == len(out2)
|
|
for i in range(len(out1)):
|
|
assert_hf_output_close(
|
|
out1[i],
|
|
out2[i],
|
|
track_name=f"{track_name}.{i}",
|
|
ignore_keys=ignore_keys,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
elif isinstance(out1, Tensor) and isinstance(out2, Tensor):
|
|
if out1.shape != out2.shape:
|
|
raise AssertionError(f"{track_name}: shape mismatch: {out1.shape} vs {out2.shape}")
|
|
assert_close(
|
|
out1, out2, atol=atol, rtol=rtol
|
|
), f"{track_name}: tensor value mismatch\nvalue 1: {out1}\nvalue 2: {out2}, \nmean error: {torch.abs(out1 - out2).mean()}"
|
|
else:
|
|
assert out1 == out2, f"{track_name}: value mismatch.\nout1: {out1}\nout2: {out2}"
|