mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1193 lines
45 KiB
1193 lines
45 KiB
import functools
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn.functional as F
|
|
|
|
from colossalai.pipeline.weight_grad_store import WeightGradStore
|
|
|
|
from .utils import is_share_sp_tp
|
|
|
|
try:
|
|
import fused_mix_prec_layer_norm_cuda
|
|
except:
|
|
fused_mix_prec_layer_norm_cuda = None
|
|
|
|
try:
|
|
import fused_weight_gradient_mlp_cuda
|
|
|
|
_grad_accum_fusion_available = True
|
|
except ImportError:
|
|
_grad_accum_fusion_available = False
|
|
|
|
from colossalai.quantization.fp8 import (
|
|
all_gather_fp8,
|
|
all_reduce_fp8,
|
|
all_to_all_fp8,
|
|
all_to_all_single_fp8,
|
|
reduce_scatter_fp8,
|
|
)
|
|
|
|
|
|
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
|
|
r"""Layernorm
|
|
|
|
Args:
|
|
input: input matrix.
|
|
weight: weight matrix.
|
|
bias: bias matrix.
|
|
normalized_shape: input shape from an expected input of size.
|
|
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]`
|
|
If a single integer is used, it is treated as a singleton list, and this module will
|
|
normalize over the last dimension which is expected to be of that specific size.
|
|
eps: a value added to the denominator for numerical stability
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
|
ctx.normalized_shape = normalized_shape
|
|
ctx.eps = eps
|
|
input_ = input.contiguous()
|
|
weight_ = weight.contiguous()
|
|
bias_ = bias.contiguous()
|
|
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(
|
|
input_, ctx.normalized_shape, weight_, bias_, ctx.eps
|
|
)
|
|
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
|
grad_input = grad_weight = grad_bias = None
|
|
grad_input, grad_weight, grad_bias = fused_mix_prec_layer_norm_cuda.backward_affine(
|
|
grad_output.contiguous(), mean, invvar, input_, ctx.normalized_shape, weight_, bias_, ctx.eps
|
|
)
|
|
|
|
return grad_input, grad_weight, grad_bias, None, None
|
|
|
|
|
|
class MatmulWithAsyncCommunication(torch.autograd.Function):
|
|
"""
|
|
Linear layer execution with asynchronous communication in backprop.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
|
|
ctx.save_for_backward(input_, weight, bias)
|
|
ctx.use_bias = bias is not None
|
|
ctx.process_group = process_group
|
|
ctx.async_grad_allreduce = async_grad_allreduce
|
|
ctx.fp8_communication = fp8_communication
|
|
|
|
output = torch.matmul(input_, weight)
|
|
|
|
if bias is not None:
|
|
output = output + bias
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input, weight, bias = ctx.saved_tensors
|
|
use_bias = ctx.use_bias
|
|
fp8_communication = ctx.fp8_communication
|
|
|
|
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias.
|
|
weight = weight.view(weight.shape)
|
|
if bias is not None:
|
|
bias = bias.view(bias.shape)
|
|
|
|
total_input = input
|
|
grad_input = grad_output.matmul(weight.T)
|
|
grad_output = grad_output.contiguous()
|
|
# Convert the tensor shapes to 2D for execution compatibility
|
|
if len(grad_output.shape) > 2:
|
|
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
|
total_input = total_input.view(-1, total_input.shape[-1])
|
|
|
|
if fp8_communication or not ctx.async_grad_allreduce:
|
|
_reduce(grad_input, group=ctx.process_group, fp8_communication=fp8_communication, fp8_format="e5m2")
|
|
elif ctx.async_grad_allreduce:
|
|
# Asynchronous all-reduce
|
|
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
|
|
# Rely on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
|
|
# all-reduce scheduled first and have GPU resources allocated, CUDA_DEVICE_MAX_CONNECTIONS=1 is set in shardformer.py
|
|
|
|
grad_weight = total_input.t().matmul(grad_output)
|
|
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
|
|
|
if ctx.async_grad_allreduce and not fp8_communication:
|
|
handle.wait()
|
|
|
|
return grad_input, grad_weight, grad_bias, None, None, None, None
|
|
|
|
|
|
class LinearWithAsyncCommunication(torch.autograd.Function):
|
|
"""
|
|
Linear layer execution with asynchronous communication in backprop.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False):
|
|
ctx.save_for_backward(input_, weight, bias)
|
|
ctx.use_bias = bias is not None
|
|
ctx.process_group = process_group
|
|
ctx.async_grad_allreduce = async_grad_allreduce
|
|
ctx.fp8_communication = fp8_communication
|
|
ctx.use_zbv = use_zbv
|
|
if bias is not None:
|
|
output = F.linear(input_, weight, bias)
|
|
else:
|
|
output = F.linear(input_, weight)
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input, weight, bias = ctx.saved_tensors
|
|
use_bias = ctx.use_bias
|
|
fp8_communication = ctx.fp8_communication
|
|
use_zbv = ctx.use_zbv
|
|
|
|
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
|
|
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
|
|
|
|
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
|
return wgrad_gemm_func(_grad_output_.t(), _input_)
|
|
|
|
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
|
|
if use_bias:
|
|
bias.view(bias.shape)
|
|
|
|
total_input = input.contiguous()
|
|
grad_input = grad_output.matmul(weight)
|
|
grad_output = grad_output.contiguous()
|
|
# Convert the tensor shapes to 2D for execution compatibility
|
|
if len(grad_output.shape) > 2:
|
|
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
|
total_input = total_input.view(-1, total_input.shape[-1])
|
|
|
|
if ctx.async_grad_allreduce:
|
|
# Asynchronous all-reduce
|
|
if fp8_communication:
|
|
all_reduce_fp8(grad_input, group=ctx.process_group)
|
|
else:
|
|
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
|
|
# Relay on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
|
|
# all-reduce scheduled first and have GPU resources allocated, CUDA_DEVICE_MAX_CONNECTIONS=1 is set in shardformer.py
|
|
if _grad_accum_fusion_available and weight.grad is not None:
|
|
grad = weight.grad
|
|
if use_zbv:
|
|
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
|
|
if grad.dtype == torch.float32:
|
|
WeightGradStore.put(
|
|
total_input,
|
|
grad_output,
|
|
weight,
|
|
functools.partial(
|
|
execute_w_pass_grad_accum,
|
|
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
|
|
),
|
|
)
|
|
grad_weight = None
|
|
elif grad.dtype in (torch.float16, torch.bfloat16):
|
|
WeightGradStore.put(
|
|
total_input,
|
|
grad_output,
|
|
weight,
|
|
functools.partial(
|
|
execute_w_pass_grad_accum,
|
|
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
|
|
),
|
|
)
|
|
grad_weight = None
|
|
else:
|
|
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
|
else:
|
|
if grad.dtype == torch.float32:
|
|
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
|
grad_weight = None
|
|
elif grad.dtype == torch.float16:
|
|
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
|
grad_weight = None
|
|
else:
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
else:
|
|
if use_zbv:
|
|
WeightGradStore.put(
|
|
total_input,
|
|
grad_output,
|
|
weight,
|
|
functools.partial(
|
|
execute_w_pass,
|
|
wgrad_gemm_func=torch.matmul,
|
|
),
|
|
)
|
|
grad_weight = None
|
|
else:
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
|
|
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
|
|
|
if ctx.async_grad_allreduce and not fp8_communication:
|
|
handle.wait()
|
|
return grad_input, grad_weight, grad_bias, None, None, None, None
|
|
|
|
|
|
class LinearWithGradAccum(torch.autograd.Function):
|
|
"""
|
|
Linear layer baseline (no tensor parallel version).
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, weight, bias, async_grad_allreduce, use_zbv=False):
|
|
ctx.save_for_backward(input_, weight, bias)
|
|
ctx.use_bias = bias is not None
|
|
ctx.async_grad_allreduce = async_grad_allreduce
|
|
ctx.use_zbv = use_zbv
|
|
if bias is not None:
|
|
output = F.linear(input_, weight, bias)
|
|
else:
|
|
output = F.linear(input_, weight)
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input, weight, bias = ctx.saved_tensors
|
|
use_bias = ctx.use_bias
|
|
use_zbv = ctx.use_zbv
|
|
|
|
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
|
|
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
|
|
|
|
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
|
|
return wgrad_gemm_func(_grad_output_.t(), _input_)
|
|
|
|
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
|
|
if use_bias:
|
|
bias.view(bias.shape)
|
|
|
|
total_input = input.contiguous()
|
|
grad_input = grad_output.matmul(weight)
|
|
grad_output = grad_output.contiguous()
|
|
# Convert the tensor shapes to 2D for execution compatibility
|
|
if len(grad_output.shape) > 2:
|
|
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
|
total_input = total_input.view(-1, total_input.shape[-1])
|
|
|
|
if _grad_accum_fusion_available and weight.grad is not None:
|
|
grad = weight.grad
|
|
if use_zbv:
|
|
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
|
|
if grad.dtype == torch.float32:
|
|
WeightGradStore.put(
|
|
total_input,
|
|
grad_output,
|
|
weight,
|
|
functools.partial(
|
|
execute_w_pass_grad_accum,
|
|
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
|
|
),
|
|
)
|
|
grad_weight = None
|
|
elif grad.dtype in (torch.float16, torch.bfloat16):
|
|
WeightGradStore.put(
|
|
total_input,
|
|
grad_output,
|
|
weight,
|
|
functools.partial(
|
|
execute_w_pass_grad_accum,
|
|
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
|
|
),
|
|
)
|
|
grad_weight = None
|
|
else:
|
|
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
|
|
else:
|
|
if grad.dtype == torch.float32:
|
|
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
|
grad_weight = None
|
|
elif grad.dtype == torch.float16:
|
|
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
|
grad_weight = None
|
|
else:
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
else:
|
|
if use_zbv:
|
|
WeightGradStore.put(
|
|
total_input,
|
|
grad_output,
|
|
weight,
|
|
functools.partial(
|
|
execute_w_pass,
|
|
wgrad_gemm_func=torch.matmul,
|
|
),
|
|
)
|
|
grad_weight = None
|
|
else:
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
|
|
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
|
|
|
return grad_input, grad_weight, grad_bias, None, None, None, None
|
|
|
|
|
|
def _ring_as_gather(func, input_to_gather=None, input_local=None, process_group=None, gather_dim=1, keep_item=False):
|
|
# currently only support one single tensor as output
|
|
group_size = dist.get_world_size(process_group)
|
|
cur_rank = dist.get_rank(process_group)
|
|
|
|
# output_tensors = [torch.empty((input_shape[0], input_shape[1], weight_shape[0])) for _ in range(group_size)]
|
|
|
|
# initialization of ring communication
|
|
recv_rank = cur_rank + 1 if cur_rank + 1 < group_size else 0
|
|
send_rank = cur_rank - 1 if cur_rank > 0 else group_size - 1
|
|
rank_map = list(dist.get_process_group_ranks(process_group))
|
|
recv_rank = rank_map[recv_rank]
|
|
send_rank = rank_map[send_rank]
|
|
recv_tensors = {}
|
|
send_tensors = {}
|
|
for k, v in input_to_gather.items():
|
|
recv_tensors[k] = torch.empty_like(v)
|
|
send_tensors[k] = v.clone()
|
|
|
|
def communicate_step():
|
|
comm_ops = []
|
|
for k in recv_tensors:
|
|
comm_ops.append(dist.P2POp(dist.irecv, recv_tensors[k], recv_rank, group=process_group))
|
|
comm_ops.append(dist.P2POp(dist.isend, send_tensors[k], send_rank, group=process_group))
|
|
return dist.batch_isend_irecv(comm_ops)
|
|
|
|
def switch_step():
|
|
for k in recv_tensors:
|
|
send_tensors[k], recv_tensors[k] = recv_tensors[k], send_tensors[k]
|
|
|
|
input_tensors = []
|
|
output_tensors = []
|
|
|
|
handles = communicate_step()
|
|
# first round: special case, retrive from local tensor
|
|
input_tensors.append(input_to_gather)
|
|
output_tensors.append(func(**input_to_gather, **input_local))
|
|
for i in range(group_size - 2):
|
|
for handle in handles:
|
|
handle.wait()
|
|
|
|
switch_step()
|
|
|
|
handles = communicate_step()
|
|
|
|
# actual computation
|
|
input_tensors.append(send_tensors)
|
|
output_tensors.append(func(**send_tensors, **input_local))
|
|
|
|
# final round: special case, no need to send/recv again
|
|
for handle in handles:
|
|
handle.wait()
|
|
input_tensors.append(send_tensors)
|
|
output_tensors.append(func(**recv_tensors, **input_local))
|
|
|
|
gathered_input = {}
|
|
for k in input_to_gather:
|
|
input_shards = [d[k] for d in input_tensors[group_size - cur_rank :] + input_tensors[: group_size - cur_rank]]
|
|
gathered_input[k] = torch.cat(input_shards, dim=gather_dim)
|
|
|
|
gathered_output = torch.cat(
|
|
output_tensors[group_size - cur_rank :] + output_tensors[: group_size - cur_rank], dim=gather_dim
|
|
)
|
|
|
|
return gathered_output, gathered_input
|
|
|
|
|
|
class _GatherForwardReduceScatterBackward(torch.autograd.Function):
|
|
"""Gather input from sequence parallel in forward and reduce-scatter gradient in backward
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
|
|
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
|
|
overlap (`bool`): Whther to overlap the all_gather op and gradient calculate in backward.
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, process_group, dim, fp8_communication=False):
|
|
ctx.process_group = process_group
|
|
ctx.dim = dim
|
|
ctx.fp8_communication = fp8_communication
|
|
|
|
return _gather(input_, dim, process_group, fp8_communication, fp8_format="e4m3")
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
dim = ctx.dim
|
|
process_group = ctx.process_group
|
|
fp8_communication = ctx.fp8_communication
|
|
# do reduce-scatter
|
|
new_shape = list(grad_output.shape)
|
|
assert (
|
|
new_shape[dim] % dist.get_world_size(process_group) == 0
|
|
), f"The dimension to split ({new_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). "
|
|
new_shape[dim] = new_shape[dim] // dist.get_world_size(process_group)
|
|
grad_list = [
|
|
item.contiguous() for item in torch.chunk(grad_output, dist.get_world_size(process_group), dim=dim)
|
|
]
|
|
output = torch.empty(new_shape, dtype=grad_output.dtype, device=grad_output.device)
|
|
|
|
if fp8_communication:
|
|
reduce_scatter_fp8(output, grad_list, group=process_group, fp8_format="e5m2")
|
|
else:
|
|
dist.reduce_scatter(output, grad_list, group=process_group)
|
|
|
|
return output, None, None, None
|
|
|
|
|
|
class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
|
"""Gather input from sequence parallel in forward and reduce-scatter gradient in backward
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
|
|
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
|
|
overlap (`bool`): Whether to overlap the all_gather op and gradient calculate in backward.
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False):
|
|
ctx.save_for_backward(input_, weight, bias)
|
|
ctx.use_bias = bias is not None
|
|
ctx.process_group = process_group
|
|
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
|
|
ctx.dim = dim
|
|
|
|
if ring is True:
|
|
input_to_gather = {"input": input_}
|
|
input_local = {"weight": weight}
|
|
|
|
output, input_dict = _ring_as_gather(
|
|
F.linear,
|
|
input_to_gather=input_to_gather,
|
|
input_local=input_local,
|
|
process_group=process_group,
|
|
)
|
|
ctx.gathered_input = input_dict["input"]
|
|
|
|
if bias is not None:
|
|
output += bias
|
|
else:
|
|
input_parallel = _gather(input_, dim, process_group)
|
|
ctx.gathered_input = input_parallel
|
|
if bias is not None:
|
|
output = F.linear(input_parallel, weight, bias)
|
|
else:
|
|
output = F.linear(input_parallel, weight)
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input_, weight, bias = ctx.saved_tensors
|
|
use_bias = ctx.use_bias
|
|
dim = ctx.dim
|
|
process_group = ctx.process_group
|
|
|
|
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
|
|
if use_bias:
|
|
bias = bias.view(bias.shape)
|
|
|
|
input_parallel = ctx.gathered_input
|
|
|
|
total_input = input_parallel
|
|
grad_input = grad_output.matmul(weight)
|
|
grad_output = grad_output.contiguous()
|
|
# Convert the tensor shapes to 2D for execution compatibility
|
|
if len(grad_output.shape) > 2:
|
|
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
|
total_input = total_input.view(-1, total_input.shape[-1])
|
|
|
|
if ctx.async_grad_reduce_scatter:
|
|
# Asynchronous reduce-scatter
|
|
input_list = [
|
|
item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim)
|
|
]
|
|
output = torch.empty(input_.shape, dtype=input_parallel.dtype, device=input_parallel.device).contiguous()
|
|
handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True)
|
|
# Rely on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
|
|
# all-reduce scheduled first and have GPU resources allocated, CUDA_DEVICE_MAX_CONNECTIONS=1 is set in shardformer.py
|
|
|
|
if _grad_accum_fusion_available and weight.grad is not None:
|
|
grad = weight.grad
|
|
if grad.dtype == torch.float32:
|
|
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
|
|
grad_weight = None
|
|
elif grad.dtype == torch.float16:
|
|
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
|
|
grad_weight = None
|
|
else:
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
else:
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
|
|
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
|
|
|
if ctx.async_grad_reduce_scatter:
|
|
handle.wait()
|
|
|
|
return output, grad_weight, grad_bias, None, None, None, None
|
|
|
|
|
|
def _ring_as_reducescatter(
|
|
func, input_to_reducescatter=None, input_local=None, process_group=None, reducescatter_dim=1
|
|
):
|
|
# currently only support one single tensor as output
|
|
group_size = dist.get_world_size(process_group)
|
|
cur_rank = dist.get_rank(process_group)
|
|
|
|
# initialization of ring communication
|
|
recv_rank = cur_rank - 1 if cur_rank > 0 else group_size - 1
|
|
send_rank = cur_rank + 1 if cur_rank + 1 < group_size else 0
|
|
rank_map = list(dist.get_process_group_ranks(process_group))
|
|
recv_rank = rank_map[recv_rank]
|
|
send_rank = rank_map[send_rank]
|
|
input_tensors = []
|
|
for _ in range(group_size):
|
|
input_tensors.append({})
|
|
for k, v in input_to_reducescatter.items():
|
|
input_shape = v.shape
|
|
assert input_shape[reducescatter_dim] % group_size == 0
|
|
_input_tensors = list(torch.split(v, input_shape[reducescatter_dim] // group_size, dim=reducescatter_dim))
|
|
for i in range(group_size):
|
|
input_tensors[i][k] = _input_tensors[i]
|
|
input_tensors = input_tensors[cur_rank:] + input_tensors[:cur_rank]
|
|
input_tensors.reverse()
|
|
|
|
output_tensor = func(**input_tensors[0], **input_local)
|
|
recv_tensor = torch.empty_like(output_tensor)
|
|
send_tensor = output_tensor.clone()
|
|
|
|
def communicate_step():
|
|
recv_op = dist.P2POp(dist.irecv, recv_tensor, recv_rank, group=process_group)
|
|
send_op = dist.P2POp(dist.isend, send_tensor, send_rank, group=process_group)
|
|
return dist.batch_isend_irecv([recv_op, send_op])
|
|
|
|
handles = communicate_step()
|
|
# first round: special case, retrive from local tensor
|
|
for i in range(group_size - 2):
|
|
# actual computation
|
|
output_tensor = func(**input_tensors[i + 1], **input_local)
|
|
|
|
for handle in handles:
|
|
handle.wait()
|
|
output_tensor += recv_tensor
|
|
|
|
tmp_tensor = send_tensor
|
|
send_tensor = output_tensor
|
|
output_tensor = tmp_tensor
|
|
|
|
handles = communicate_step()
|
|
|
|
# final round: special case, no need to send/recv again
|
|
output_tensor = func(**input_tensors[-1], **input_local)
|
|
for handle in handles:
|
|
handle.wait()
|
|
output_tensor += recv_tensor
|
|
return output_tensor
|
|
|
|
|
|
class _LinearWithReduceScatterForwardGatherBackward(torch.autograd.Function):
|
|
"""Reduce-scatter input from sequence parallel in forward and gather gradient in backward with ring
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
|
|
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
|
|
overlap (`bool`): Whther to overlap the all_gather op and gradient calculate in backward.
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, weight, bias, process_group, dim, ring):
|
|
ctx.save_for_backward(input_, weight, bias)
|
|
ctx.use_bias = bias is not None
|
|
ctx.process_group = process_group
|
|
ctx.dim = dim
|
|
|
|
if ring is True:
|
|
input_to_reducescatter = {"input": input_}
|
|
input_local = {"weight": weight}
|
|
|
|
if bias is not None:
|
|
input_to_reducescatter["bias"] = bias
|
|
|
|
output = _ring_as_reducescatter(
|
|
F.linear,
|
|
input_to_reducescatter=input_to_reducescatter,
|
|
input_local=input_local,
|
|
process_group=process_group,
|
|
)
|
|
else:
|
|
if bias is not None:
|
|
partial_output = F.linear(input_, weight, bias)
|
|
else:
|
|
partial_output = F.linear(input_, weight)
|
|
|
|
output_shape = list(partial_output.shape)
|
|
assert (
|
|
output_shape[dim] % dist.get_world_size(process_group) == 0
|
|
), f"The dimension to split ({output_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). "
|
|
output_shape[dim] = output_shape[dim] // dist.get_world_size(process_group)
|
|
|
|
output_list = [
|
|
item.contiguous() for item in torch.chunk(partial_output, dist.get_world_size(process_group), dim=dim)
|
|
]
|
|
output = torch.empty(output_shape, dtype=partial_output.dtype, device=partial_output.device).contiguous()
|
|
dist.reduce_scatter(output, output_list, group=process_group)
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input_, weight, bias = ctx.saved_tensors
|
|
use_bias = ctx.use_bias
|
|
dim = ctx.dim
|
|
process_group = ctx.process_group
|
|
|
|
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
|
|
if use_bias:
|
|
bias = bias.view(bias.shape)
|
|
|
|
grad_output = _gather(grad_output, dim, process_group)
|
|
|
|
# TODO Need to fully optimize
|
|
total_input = input_
|
|
grad_input = grad_output.matmul(weight)
|
|
grad_output = grad_output.contiguous()
|
|
# Convert the tensor shapes to 2D for execution compatibility
|
|
if len(grad_output.shape) > 2:
|
|
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
|
total_input = total_input.reshape(-1, total_input.shape[-1])
|
|
grad_weight = grad_output.t().matmul(total_input)
|
|
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
|
|
|
return grad_input, grad_weight, grad_bias, None, None, None
|
|
|
|
|
|
class _ReduceScatterForwardGatherBackward(torch.autograd.Function):
|
|
"""Reduce-scatter input from sequence parallel in forward and gather gradient in backward
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
|
|
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, process_group, dim, fp8_communication=False):
|
|
ctx.dim = dim
|
|
ctx.process_group = process_group
|
|
ctx.fp8_communication = fp8_communication
|
|
|
|
# do reduce-scatter
|
|
new_shape = list(input_.shape)
|
|
assert (
|
|
new_shape[dim] % dist.get_world_size(process_group) == 0
|
|
), f"The dimension to split ({new_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). "
|
|
new_shape[dim] = new_shape[dim] // dist.get_world_size(process_group)
|
|
input_list = [item.contiguous() for item in torch.chunk(input_, dist.get_world_size(process_group), dim=dim)]
|
|
output = torch.empty(new_shape, dtype=input_.dtype, device=input_.device)
|
|
if fp8_communication:
|
|
reduce_scatter_fp8(output, input_list, group=process_group, fp8_format="e4m3")
|
|
else:
|
|
dist.reduce_scatter(output, input_list, group=process_group)
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
dim = ctx.dim
|
|
process_group = ctx.process_group
|
|
fp8_communication = ctx.fp8_communication
|
|
|
|
return _gather(grad_output, dim, process_group, fp8_communication, fp8_format="e5m2"), None, None, None
|
|
|
|
|
|
class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
|
"""
|
|
This class is designed for matmul operation with gather forward and reduce-scatter backward.
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): input matrix.
|
|
dim (int): the dimension to perform split and gather
|
|
process_group (`torch.distributed.ProcessGroup`): the process group used for collective communication
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring, fp8_communication):
|
|
ctx.save_for_backward(input_, weight, bias)
|
|
ctx.use_bias = bias is not None
|
|
ctx.process_group = process_group
|
|
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
|
|
ctx.dim = dim
|
|
ctx.fp8_communication = fp8_communication
|
|
|
|
if ring is True:
|
|
input_to_gather = {"input": input_}
|
|
input_local = {"other": weight}
|
|
|
|
output, input_dict = _ring_as_gather(
|
|
torch.matmul,
|
|
input_to_gather=input_to_gather,
|
|
input_local=input_local,
|
|
process_group=process_group,
|
|
gather_dim=dim,
|
|
)
|
|
ctx.gathered_input = input_dict["input"]
|
|
|
|
else:
|
|
input_parallel = _gather(input_, dim, process_group, fp8_communication, fp8_format="e4m3")
|
|
ctx.gathered_input = input_parallel
|
|
output = torch.matmul(input_parallel, weight)
|
|
|
|
if bias is not None:
|
|
output = output + bias
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input_, weight, bias = ctx.saved_tensors
|
|
use_bias = ctx.use_bias
|
|
dim = ctx.dim
|
|
process_group = ctx.process_group
|
|
|
|
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm
|
|
weight = weight.view(weight.shape)
|
|
if use_bias:
|
|
bias = bias.view(bias.shape)
|
|
|
|
input_parallel = ctx.gathered_input
|
|
|
|
total_input = input_parallel
|
|
grad_input = grad_output.matmul(weight.T)
|
|
grad_output = grad_output.contiguous()
|
|
# Convert the tensor shapes to 2D for execution compatibility
|
|
if len(grad_output.shape) > 2:
|
|
grad_output = grad_output.view(-1, grad_output.shape[-1])
|
|
total_input = total_input.view(-1, total_input.shape[-1])
|
|
|
|
if ctx.async_grad_reduce_scatter:
|
|
# Asynchronous reduce-scatter
|
|
input_list = [
|
|
item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim)
|
|
]
|
|
output = torch.empty(input_.shape, dtype=input_parallel.dtype, device=input_parallel.device).contiguous()
|
|
handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True)
|
|
# Rely on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
|
|
# all-reduce scheduled first and have GPU resources allocated
|
|
|
|
grad_weight = total_input.t().matmul(grad_output)
|
|
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
|
|
|
if ctx.async_grad_reduce_scatter:
|
|
handle.wait()
|
|
|
|
return output, grad_weight, grad_bias, None, None, None, None, None
|
|
|
|
|
|
class _SplitForwardGatherBackward(torch.autograd.Function):
|
|
"""
|
|
Split the input and keep only the corresponding chuck to the rank.
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): input matrix.
|
|
dim (int): the dimension to perform split and gather
|
|
process_group (`torch.distributed.ProcessGroup`): the process group used for collective communication
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, dim, process_group, grad_scale=None, fp8_communication=False):
|
|
ctx.process_group = process_group
|
|
ctx.dim = dim
|
|
ctx.grad_scale = grad_scale
|
|
ctx.fp8_communication = fp8_communication
|
|
return _split(input_, dim, process_group)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
if ctx.grad_scale is not None:
|
|
grad_output = grad_output * ctx.grad_scale
|
|
|
|
return (
|
|
_gather(grad_output, ctx.dim, ctx.process_group, ctx.fp8_communication, fp8_format="e5m2"),
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
|
|
class _ReduceForward(torch.autograd.Function):
|
|
"""
|
|
All-reduce the input from the model parallel region.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
process_group: communication group.
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, process_group, grad_scale=None, fp8_communication=False):
|
|
ctx.grad_scale = grad_scale
|
|
return _reduce(input_, process_group, fp8_communication, fp8_format="e4m3")
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
if ctx.grad_scale is not None:
|
|
grad_output = grad_output * ctx.grad_scale
|
|
return grad_output, None, None, None
|
|
|
|
|
|
class _ReduceBackward(torch.autograd.Function):
|
|
"""
|
|
All-reduce the input from the model parallel region.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
parallel_mode: parallel mode.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, process_group, fp8_communication=False):
|
|
ctx.process_group = process_group
|
|
ctx.fp8_communication = fp8_communication
|
|
return input_
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
fp8_communication = ctx.fp8_communication
|
|
return _reduce(grad_output, ctx.process_group, fp8_communication, fp8_format="e5m2"), None, None
|
|
|
|
|
|
class _GatherForwardSplitBackward(torch.autograd.Function):
|
|
"""Gather the input from model parallel region and concatenate.
|
|
|
|
Args:
|
|
input_: input matrix.
|
|
parallel_mode: parallel mode.
|
|
dim: dimension
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, dim, process_group, grad_scale=None, fp8_communication=False):
|
|
ctx.process_group = process_group
|
|
ctx.dim = dim
|
|
ctx.grad_scale = grad_scale
|
|
|
|
return _gather(input_, dim, process_group, fp8_communication=fp8_communication, fp8_format="e4m3")
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
if ctx.grad_scale is not None:
|
|
grad_output = grad_output * ctx.grad_scale
|
|
return _split(grad_output, ctx.dim, ctx.process_group), None, None, None, None
|
|
|
|
|
|
class _AllToAll(torch.autograd.Function):
|
|
"""All-to-all communication.
|
|
|
|
Args:
|
|
input_: input matrix
|
|
process_group: communication group
|
|
scatter_dim: scatter dimension
|
|
gather_dim: gather dimension
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input_, process_group, scatter_dim, gather_dim, fp8_communication=False):
|
|
ctx.process_group = process_group
|
|
ctx.scatter_dim = scatter_dim
|
|
ctx.gather_dim = gather_dim
|
|
ctx.fp8_communication = fp8_communication
|
|
world_size = dist.get_world_size(process_group)
|
|
bsz = input_.shape[0]
|
|
|
|
# using all_to_all_single when batch size is 1
|
|
if bsz == 1:
|
|
return _all_to_all_single(
|
|
input_,
|
|
world_size,
|
|
process_group,
|
|
scatter_dim,
|
|
gather_dim,
|
|
fp8_communication=fp8_communication,
|
|
fp8_format="e4m3",
|
|
)
|
|
else:
|
|
return _all_to_all(
|
|
input_,
|
|
world_size,
|
|
process_group,
|
|
scatter_dim,
|
|
gather_dim,
|
|
fp8_communication=fp8_communication,
|
|
fp8_format="e4m3",
|
|
)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
process_group = ctx.process_group
|
|
scatter_dim = ctx.gather_dim
|
|
gather_dim = ctx.scatter_dim
|
|
fp8_communication = ctx.fp8_communication
|
|
world_size = dist.get_world_size(process_group)
|
|
bsz = grad_output.shape[0]
|
|
|
|
if bsz == 1:
|
|
return_grad = _all_to_all_single(
|
|
grad_output,
|
|
world_size,
|
|
process_group,
|
|
scatter_dim,
|
|
gather_dim,
|
|
fp8_communication=fp8_communication,
|
|
fp8_format="e5m2",
|
|
)
|
|
else:
|
|
return_grad = _all_to_all(
|
|
grad_output,
|
|
world_size,
|
|
process_group,
|
|
scatter_dim,
|
|
gather_dim,
|
|
fp8_communication=fp8_communication,
|
|
fp8_format="e5m2",
|
|
)
|
|
|
|
return (return_grad, None, None, None, None)
|
|
|
|
|
|
class HookParameter(torch.autograd.Function):
|
|
"""In order to be hooked into Gemini's '__torch_function__', adding a view operation to weight and bias. Used in FusedLayerNorm"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input, weight, bias):
|
|
ctx.save_for_backward(weight, bias)
|
|
output = input
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
weight, bias = ctx.saved_tensors
|
|
if weight is not None:
|
|
weight = weight.view(weight.shape)
|
|
if bias is not None:
|
|
bias = bias.view(bias.shape)
|
|
return grad_output, None, None
|
|
|
|
|
|
def hook_parameter_in_backward(input, weight=None, bias=None):
|
|
return HookParameter.apply(input, weight, bias)
|
|
|
|
|
|
def _reduce(input_, process_group, fp8_communication=False, fp8_format="e5m2"):
|
|
# skip if only one rank involved
|
|
if dist.get_world_size(process_group) == 1:
|
|
return input_
|
|
else:
|
|
if fp8_communication:
|
|
all_reduce_fp8(input_, group=process_group, fp8_format=fp8_format)
|
|
else:
|
|
dist.all_reduce(input_, group=process_group)
|
|
return input_
|
|
|
|
|
|
def _split(input_, dim=-1, process_group=None):
|
|
# skip if only one rank involved
|
|
world_size = dist.get_world_size(process_group)
|
|
if world_size == 1:
|
|
return input_
|
|
|
|
# Split along last dimension.
|
|
dim_size = input_.size(dim)
|
|
assert dim_size % world_size == 0, (
|
|
f"The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), "
|
|
f"cannot split tensor evenly"
|
|
)
|
|
|
|
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
|
|
rank = dist.get_rank(process_group)
|
|
output = tensor_list[rank].clone().contiguous()
|
|
|
|
return output
|
|
|
|
|
|
def _gather(input_, dim=-1, process_group=None, fp8_communication=False, fp8_format="e5m2"):
|
|
# skip if only one rank involved
|
|
world_size = dist.get_world_size(process_group)
|
|
if world_size == 1:
|
|
return input_
|
|
|
|
input_ = input_.contiguous()
|
|
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
|
if fp8_communication:
|
|
all_gather_fp8(tensor_list, input_, fp8_format=fp8_format, group=process_group)
|
|
else:
|
|
dist.all_gather(tensor_list, input_, group=process_group)
|
|
|
|
output = torch.cat(tensor_list, dim=dim).contiguous()
|
|
|
|
return output
|
|
|
|
|
|
def _reduce_scatter(input_, dim=1, process_group=None):
|
|
"""Do reduce-scatter operation.
|
|
|
|
Args:
|
|
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
|
|
dim (int): The dimension to perform reduce-scatter.
|
|
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
|
|
"""
|
|
world_size = dist.get_world_size(process_group)
|
|
if world_size == 1:
|
|
return input_
|
|
|
|
# reduce-scatter
|
|
new_shape = list(input_.shape)
|
|
assert (
|
|
new_shape[dim] % dist.get_world_size(process_group) == 0
|
|
), f"The dimension to split ({new_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). "
|
|
new_shape[dim] = new_shape[dim] // world_size
|
|
output = torch.empty(new_shape, dtype=input_.dtype, device=input_.device)
|
|
dist.reduce_scatter(output, input_, group=process_group)
|
|
|
|
return output
|
|
|
|
|
|
def _all_to_all(input_, world_size, group, scatter_dim, gather_dim, fp8_communication=False, fp8_format="e5m2"):
|
|
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
|
|
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
|
|
if fp8_communication:
|
|
all_to_all_fp8(output_list, input_list, group=group, fp8_format=fp8_format)
|
|
else:
|
|
dist.all_to_all(output_list, input_list, group=group)
|
|
return torch.cat(output_list, dim=gather_dim).contiguous()
|
|
|
|
|
|
def _all_to_all_single(
|
|
input_, seq_world_size, group, scatter_dim, gather_dim, fp8_communication=False, fp8_format="e5m2"
|
|
):
|
|
inp_shape = list(input_.shape)
|
|
inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
|
|
if scatter_dim < 2:
|
|
input_t = input_.reshape([seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :]).contiguous()
|
|
else:
|
|
input_t = (
|
|
input_.reshape([-1, seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :])
|
|
.transpose(0, 1)
|
|
.contiguous()
|
|
)
|
|
|
|
output = torch.empty_like(input_t)
|
|
if fp8_communication:
|
|
all_to_all_single_fp8(output, input_t, group=group, fp8_format=fp8_format)
|
|
else:
|
|
|
|
dist.all_to_all_single(output, input_t, group=group)
|
|
|
|
if scatter_dim < 2:
|
|
output = output.transpose(0, 1).contiguous()
|
|
|
|
return output.reshape(
|
|
inp_shape[:gather_dim]
|
|
+ [
|
|
inp_shape[gather_dim] * seq_world_size,
|
|
]
|
|
+ inp_shape[gather_dim + 1 :]
|
|
).contiguous()
|
|
|
|
|
|
def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
|
|
return MatmulWithAsyncCommunication.apply(
|
|
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication
|
|
)
|
|
|
|
|
|
def linear_with_async_comm(
|
|
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False
|
|
):
|
|
return LinearWithAsyncCommunication.apply(
|
|
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication, use_zbv
|
|
)
|
|
|
|
|
|
def linear_with_grad_accum(input_, weight, bias, async_grad_allreduce, use_zbv=False):
|
|
return LinearWithGradAccum.apply(input_, weight, bias, async_grad_allreduce, use_zbv)
|
|
|
|
|
|
def linear_gather_forward_reducescatter_backward(
|
|
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False
|
|
):
|
|
return _LinearWithGatherForwardReduceScatterBackward.apply(
|
|
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring
|
|
)
|
|
|
|
|
|
def gather_forward_reducescatter_backward(input_, process_group, dim, fp8_communication=False):
|
|
return _GatherForwardReduceScatterBackward.apply(input_, process_group, dim, fp8_communication)
|
|
|
|
|
|
def reducescatter_forward_gather_backward(input_, process_group, dim, fp8_communication=False):
|
|
return _ReduceScatterForwardGatherBackward.apply(input_, process_group, dim, fp8_communication)
|
|
|
|
|
|
def linear_reducescatter_forward_gather_backward(input_, weight, bias=None, process_group=None, dim=1, ring=False):
|
|
return _LinearWithReduceScatterForwardGatherBackward.apply(input_, weight, bias, process_group, dim, ring)
|
|
|
|
|
|
def matmul_gather_forward_reducescatter_backward(
|
|
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False, fp8_communication=False
|
|
):
|
|
return _MatmulWithGatherForwardReduceScatterBackward.apply(
|
|
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring, fp8_communication
|
|
)
|
|
|
|
|
|
def gather_forward_split_backward(input_, dim, process_group, grad_scale=None, fp8_communication=False):
|
|
return _GatherForwardSplitBackward.apply(input_, dim, process_group, grad_scale, fp8_communication)
|
|
|
|
|
|
def split_forward_gather_backward(input_, dim, process_group, grad_scale=None, fp8_communication=False):
|
|
return _SplitForwardGatherBackward.apply(input_, dim, process_group, grad_scale, fp8_communication)
|
|
|
|
|
|
def reduce_forward(input_, process_group, grad_scale=None, fp8_communication=False):
|
|
return _ReduceForward.apply(input_, process_group, grad_scale, fp8_communication)
|
|
|
|
|
|
def reduce_backward(input_, process_group, fp8_communication=False):
|
|
return _ReduceBackward.apply(input_, process_group, fp8_communication)
|
|
|
|
|
|
def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1, fp8_communication=False):
|
|
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim, fp8_communication)
|
|
|
|
|
|
def gather_sp_output(hidden_states, shard_config, sp_dim=1):
|
|
"""
|
|
Gather the output of the last layer for cross entropy computation
|
|
"""
|
|
sp_group = shard_config.sequence_parallel_process_group
|
|
sp_mode = shard_config.sequence_parallelism_mode
|
|
fp8_comm = shard_config.fp8_communication
|
|
if dist.get_world_size(sp_group) == 1:
|
|
return hidden_states
|
|
|
|
# Rescale grad (HybridParallelPlugin applies ZeRO grad averaging on the DP * SP group)
|
|
scale = None if is_share_sp_tp(sp_mode) else dist.get_world_size(sp_group)
|
|
hidden_states = gather_forward_split_backward(
|
|
hidden_states, sp_dim, sp_group, grad_scale=scale, fp8_communication=fp8_comm
|
|
)
|
|
return hidden_states
|