You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/fx/tracer/experimental.py

651 lines
26 KiB

import enum
import functools
import inspect
import operator
from contextlib import contextmanager
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
import torch
from torch.fx import Graph, Node, Proxy, Tracer
from torch.utils._pytree import tree_map
from colossalai.fx import ColoGraphModule, compatibility, is_compatible_with_meta
from colossalai.fx.tracer._tracer_utils import extract_meta, is_element_in_list
from colossalai.fx.tracer.bias_addition_patch import func_to_func_dict, method_to_func_dict, module_to_func_dict
from colossalai.fx.tracer.registry import (
bias_addition_function,
bias_addition_method,
bias_addition_module,
meta_patched_function,
meta_patched_module,
)
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
Target = Union[Callable[..., Any], str]
Argument = Optional[Union[Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types
List[Any], # actually Argument
Dict[str, Any], # actually Argument
slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
'Node',]]
_CScriptMethod = ['add', 'mul', 'sub', 'div']
_TorchNewMethod = [
"arange", "zeros", "zeros_like", "ones", "ones_like", "full", "full_like", "empty", "empty_like", "eye", "tensor",
"finfo"
]
_TensorPropertyMethod = ["dtype", "shape", "device", "requires_grad", "grad", "grad_fn", "data"]
def _truncate_suffix(s: str):
import re
return re.sub(r'_\d+$', '', s)
def default_device():
return torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
@compatibility(is_backward_compatible=False)
class ColoProxy(Proxy):
def __init__(self, *args, data=None, **kwargs):
super().__init__(*args, **kwargs)
self._meta_data = data
@property
def meta_data(self):
return self._meta_data
@meta_data.setter
def meta_data(self, args):
wrap_fn = lambda x: MetaTensor(x) if isinstance(x, torch.Tensor) else x
self._meta_data = tree_map(wrap_fn, args)
@classmethod
def __torch_function__(cls, orig_method, types, args=(), kwargs=None):
proxy = cls.from_torch_proxy(super().__torch_function__(orig_method, types, args, kwargs))
unwrap_fn = lambda p: p.meta_data if isinstance(p, ColoProxy) else p
kwargs = {} if kwargs is None else kwargs
if proxy.meta_data is None:
proxy.meta_data = orig_method(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
return proxy
@classmethod
def from_torch_proxy(cls, proxy: Proxy):
return cls(proxy.node, proxy.tracer)
def __repr__(self):
return f"ColoProxy({self.node.name}, meta_data={self.meta_data})"
def __len__(self):
return len(self.meta_data)
def __int__(self):
return int(self.meta_data)
def __index__(self):
try:
return int(self.meta_data)
except:
return torch.zeros(self.meta_data.shape, dtype=torch.bool).numpy().__index__()
def __float__(self):
return float(self.meta_data)
def __bool__(self):
return self.meta_data
def __getattr__(self, k):
return ColoAttribute(self, k, getattr(self._meta_data, k, None))
def __setitem__(self, key, value):
proxy = self.tracer.create_proxy('call_function', operator.setitem, (self, key, value), {})
proxy.meta_data = self._meta_data
return proxy
def __contains__(self, key):
if self.node.op == "placeholder":
# this is used to handle like
# if x in kwargs
# we don't handle this case for now
return False
return super().__contains__(key)
def __isinstancecheck__(self, type):
return isinstance(self.meta_data, type)
@property
def shape(self):
return self.meta_data.shape
@property
def ndim(self):
return self.meta_data.ndim
@property
def device(self):
proxy = self.tracer.create_proxy('call_function', getattr, (self, 'device'), {})
proxy.meta_data = self.meta_data.device
return proxy
@property
def dtype(self):
proxy = self.tracer.create_proxy('call_function', getattr, (self, 'dtype'), {})
proxy.meta_data = self.meta_data.dtype
return proxy
def to(self, *args, **kwargs):
return self.tracer.create_proxy('call_method', 'to', (self, *args), {**kwargs})
def cpu(self, *args, **kwargs):
return self.tracer.create_proxy('call_method', 'cpu', (self, *args), {**kwargs})
def cuda(self, *args, **kwargs):
return self.tracer.create_proxy('call_method', 'cuda', (self, *args), {**kwargs})
@compatibility(is_backward_compatible=False)
class ColoAttribute(ColoProxy):
def __init__(self, root, attr: str, data=None):
self.root = root
self.attr = attr
self.tracer = root.tracer
self._meta_data = data
self._node: Optional[Node] = None
@property
def node(self):
# the node for attributes is added lazily, since most will just be method calls
# which do not rely on the getitem call
if self._node is None:
self._node = self.tracer.create_proxy('call_function', getattr, (self.root, self.attr), {}).node
return self._node
def __call__(self, *args, **kwargs):
return self.tracer.create_proxy('call_method', self.attr, (self.root,) + args, kwargs)
def __repr__(self):
return f"ColoAttribute({self.node.name}, attr={self.attr})"
@compatibility(is_backward_compatible=False)
class ColoTracer(Tracer):
def __init__(self, trace_act_ckpt: bool = False, *args, **kwargs):
super().__init__(*args, **kwargs)
self._disable_module_getattr = False
self.proxy_buffer_attributes = True
# whether the tracer will record the usage of torch.utils.checkpoint
self.trace_act_ckpt = trace_act_ckpt
# whether the current tracing occurs within the activation checkpoint functions
self.inside_torch_checkpoint_func = False
self.act_ckpt_region_count = 0
def proxy(self, node: Node) -> 'ColoProxy':
return ColoProxy(node, self)
def create_proxy(self,
kind: str,
target: Target,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
name: Optional[str] = None,
type_expr: Optional[Any] = None,
proxy_factory_fn: Callable[[Node], 'Proxy'] = None):
proxy: ColoProxy = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
unwrap_fn = lambda p: p.meta_data if isinstance(p, ColoProxy) else p
if kind == 'placeholder':
proxy.meta_data = self.meta_args[target] if target in self.meta_args else self.concrete_args.get(
_truncate_suffix(target), None)
elif kind == 'get_attr':
self._disable_module_getattr = True
try:
attr_itr = self.root
atoms = target.split(".")
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
proxy.meta_data = attr_itr
finally:
self._disable_module_getattr = False
elif kind == 'call_function':
proxy.meta_data = target(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
elif kind == 'call_method':
self._disable_module_getattr = True
try:
if target == '__call__':
proxy.meta_data = unwrap_fn(args[0])(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs))
else:
if target not in _TensorPropertyMethod:
proxy._meta_data = getattr(unwrap_fn(args[0]), target)(*tree_map(unwrap_fn, args[1:]),
**tree_map(unwrap_fn, kwargs))
finally:
self._disable_module_getattr = False
elif kind == 'call_module':
mod = self.root.get_submodule(target)
self._disable_module_getattr = True
try:
proxy.meta_data = mod.forward(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
finally:
self._disable_module_getattr = False
return proxy
def create_node(self, *args, **kwargs) -> Node:
node = super().create_node(*args, **kwargs)
if self.inside_torch_checkpoint_func:
# annotate the activation checkpoint module
node.meta['activation_checkpoint'] = self.act_ckpt_region_count
return node
def trace(self,
root: torch.nn.Module,
concrete_args: Optional[Dict[str, torch.Tensor]] = None,
meta_args: Optional[Dict[str, torch.Tensor]] = None) -> Graph:
if meta_args is None:
meta_args = {}
if concrete_args is None:
concrete_args = {}
# check concrete and meta args have valid names
sig = inspect.signature(root.forward)
sig_names = set(sig.parameters.keys())
meta_arg_names = set(meta_args.keys())
# update concrete args with default values
non_meta_arg_names = sig_names - meta_arg_names
for k, v in sig.parameters.items():
if k in non_meta_arg_names and \
k not in concrete_args and \
v.default is not inspect.Parameter.empty:
concrete_args[k] = v.default
# get non concrete arg names
concrete_arg_names = set(concrete_args.keys())
non_concrete_arg_names = sig_names - concrete_arg_names
def _check_arg_name_valid(names):
success, element = is_element_in_list(names, sig_names)
if not success:
raise KeyError(
f"argument {element} is not found in the signature of {root.__class__.__name__}'s forward function")
_check_arg_name_valid(meta_arg_names)
_check_arg_name_valid(concrete_arg_names)
self.concrete_args = concrete_args
self.meta_args = meta_args
with _TorchTensorOverride(self), self.trace_activation_checkpoint(enabled=self.trace_act_ckpt):
self.graph = super().trace(root, concrete_args=concrete_args)
self.graph.lint()
return self.graph
@contextmanager
def trace_activation_checkpoint(self, enabled: bool):
if enabled:
orig_ckpt_func = torch.utils.checkpoint.CheckpointFunction
class PatchedCheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, preserve_rng_state, *args):
# signal that the current tracing occurs within activation checkpoint part
self.inside_torch_checkpoint_func = True
out = run_function(*args)
self.inside_torch_checkpoint_func = False
self.act_ckpt_region_count += 1
return out
@staticmethod
def backward(ctx: Any, *grad_outputs: Any) -> Any:
raise NotImplementedError(
"We do not implement the backward pass as we only trace the forward pass.")
# override the checkpoint function
torch.utils.checkpoint.CheckpointFunction = PatchedCheckpointFunction
yield
if enabled:
# recover the checkpoint function upon exit
torch.utils.checkpoint.CheckpointFunction = orig_ckpt_func
def _post_check(self, non_concrete_arg_names: Set[str]):
# This is necessary because concrete args are added as input to the traced module since
# https://github.com/pytorch/pytorch/pull/55888.
for node in self.graph.nodes:
if node.op == "placeholder":
# Removing default values for inputs as the forward pass will fail with them.
if node.target in non_concrete_arg_names:
node.args = ()
# Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor].
# It cannot infer on the attributes and methods the input should have, and fails.
node.type = torch.Tensor
# It is a concrete arg so it is not used and should be removed.
else:
if hasattr(torch.fx._symbolic_trace, "_assert_is_none"):
# Newer versions of torch.fx emit an assert statement
# for concrete arguments; delete those before we delete
# the concrete arg.
to_delete = []
for user in node.users:
if user.target == torch.fx._symbolic_trace._assert_is_none:
to_delete.append(user)
for user in to_delete:
self.graph.erase_node(user)
self.graph.erase_node(node)
# TODO: solves GraphModule creation.
# Without this, return type annotation "Tuple" is causing code execution failure.
if node.op == "output":
node.type = None
self.graph.lint()
def _module_getattr(self, attr, attr_val, parameter_proxy_cache):
if getattr(self, "_disable_module_getattr", False):
return attr_val
def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache):
for n, p in collection_to_search:
if attr_val is p:
if n not in parameter_proxy_cache:
kwargs = {}
if 'proxy_factory_fn' in inspect.signature(self.create_proxy).parameters:
kwargs['proxy_factory_fn'] = (None if not self.param_shapes_constant else
lambda node: ColoProxy(self, node, n, attr_val))
val_proxy = self.create_proxy('get_attr', n, (), {}, **kwargs) # type: ignore[arg-type]
parameter_proxy_cache[n] = val_proxy
return parameter_proxy_cache[n]
return None
if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
maybe_buffer_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_buffers(), parameter_proxy_cache)
if maybe_buffer_proxy is not None:
return maybe_buffer_proxy
if isinstance(attr_val, torch.nn.Parameter):
maybe_parameter_proxy = maybe_get_proxy_for_attr(attr_val, self.root.named_parameters(),
parameter_proxy_cache)
if maybe_parameter_proxy is not None:
return maybe_parameter_proxy
return attr_val
@compatibility(is_backward_compatible=True)
def symbolic_trace(
root: Union[torch.nn.Module, Callable[..., Any]],
concrete_args: Optional[Dict[str, Any]] = None,
meta_args: Optional[Dict[str, Any]] = None,
trace_act_ckpt=False,
) -> ColoGraphModule:
if is_compatible_with_meta():
if meta_args is not None:
root.to(default_device())
wrap_fn = lambda x: MetaTensor(x, fake_device=default_device()) if isinstance(x, torch.Tensor) else x
graph = ColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root,
concrete_args=concrete_args,
meta_args=tree_map(wrap_fn, meta_args))
root.cpu()
else:
graph = Tracer().trace(root, concrete_args=concrete_args)
else:
from .tracer import ColoTracer as OrigColoTracer
graph = OrigColoTracer(trace_act_ckpt=trace_act_ckpt).trace(root,
concrete_args=concrete_args,
meta_args=meta_args)
name = root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
return ColoGraphModule(root, graph, name)
@compatibility(is_backward_compatible=False)
class _TorchTensorOverride(object):
def __init__(self, tracer: Tracer):
self.overrides = {}
self.tracer = tracer
def __enter__(self):
def wrap_tensor_method(target):
@functools.wraps(target)
def wrapper(*args, **kwargs):
is_proxy = any(isinstance(p, ColoProxy) for p in args) | any(
isinstance(p, ColoProxy) for p in kwargs.values())
if is_proxy:
# if the arg is a proxy, then need to record this function called on this proxy
# e.g. torch.ones(size) where size is an input proxy
self.tracer._disable_module_getattr = True
try:
proxy = self.tracer.create_proxy('call_function', target, args, kwargs)
finally:
self.tracer._disable_module_getattr = False
return proxy
else:
return target(*args, **kwargs)
return wrapper, target
self.overrides = {
target: wrap_tensor_method(getattr(torch, target))
for target in _TorchNewMethod
if callable(getattr(torch, target))
}
for name, (wrapper, orig) in self.overrides.items():
setattr(torch, name, wrapper)
def __exit__(self, exc_type, exc_val, exc_tb):
for name, (wrapper, orig) in self.overrides.items():
setattr(torch, name, orig)
def meta_prop_pass(gm: ColoGraphModule,
root: torch.nn.Module,
meta_args: Optional[Dict[str, Any]] = None,
concrete_args: Optional[Dict[str, torch.Tensor]] = None):
if meta_args is None:
meta_args = {}
if concrete_args is None:
concrete_args = {}
# check concrete and meta args have valid names
sig = inspect.signature(root.forward)
sig_names = set(sig.parameters.keys())
meta_arg_names = set(meta_args.keys())
# update concrete args with default values
non_meta_arg_names = sig_names - meta_arg_names
for k, v in sig.parameters.items():
if k in non_meta_arg_names and \
k not in concrete_args and \
v.default is not inspect.Parameter.empty:
concrete_args[k] = v.default
for node in gm.graph.nodes:
node._meta_data = _meta_data_computing(meta_args, concrete_args, root, node.op, node.target, node.args,
node.kwargs)
def _meta_data_computing(meta_args, concrete_args, root, kind, target, args, kwargs):
unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n
if kind == 'placeholder':
meta_out = meta_args[target] if target in meta_args else concrete_args.get(_truncate_suffix(target), None)
elif kind == 'get_attr':
attr_itr = root
atoms = target.split(".")
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
meta_out = attr_itr
elif kind == 'call_function':
meta_out = target(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
elif kind == 'call_method':
if target == '__call__':
meta_out = unwrap_fn(args[0])(*tree_map(unwrap_fn, args[1:]), **tree_map(unwrap_fn, kwargs))
else:
if target not in _TensorPropertyMethod:
meta_out = getattr(unwrap_fn(args[0]), target)(*tree_map(unwrap_fn, args[1:]),
**tree_map(unwrap_fn, kwargs))
elif kind == 'call_module':
mod = root.get_submodule(target)
meta_out = mod.forward(*tree_map(unwrap_fn, args), **tree_map(unwrap_fn, kwargs))
else:
meta_out = None
return meta_out
def _meta_data_computing_v0(meta_args, root, kind, target, args, kwargs):
if kind == "placeholder" and target in meta_args and meta_args[target].is_meta:
meta_out = meta_args[target]
return meta_out
if target in [getattr(torch, torch_func) for torch_func in _TorchNewMethod]:
# NOTE: tensor constructors in PyTorch define the `device` argument as
# *kwargs-only*. That is why this works. If you add methods to
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
# this will break and you will likely see issues where we cannot infer
# the size of the output.
if "device" in kwargs:
kwargs["device"] = "meta"
try:
unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n
args_metas = tree_map(unwrap_fn, args)
kwargs_metas = tree_map(unwrap_fn, kwargs)
if kind == "call_function":
# fetch patched function
if meta_patched_function.has(target):
meta_target = meta_patched_function.get(target)
elif meta_patched_function.has(target.__name__):
# use name for some builtin op like @ (matmul)
meta_target = meta_patched_function.get(target.__name__)
else:
meta_target = target
meta_out = meta_target(*args_metas, **kwargs_metas)
if isinstance(meta_out, torch.Tensor):
meta_out = meta_out.to(device="meta")
elif kind == "call_method":
method = getattr(args_metas[0].__class__, target)
# fetch patched method
if meta_patched_function.has(method):
meta_target = meta_patched_function.get(method)
else:
meta_target = method
meta_out = meta_target(*args_metas, **kwargs_metas)
elif kind == "call_module":
mod = root.get_submodule(target)
mod_type = type(mod)
if meta_patched_module.has(mod_type):
meta_out = meta_patched_module.get(mod_type)(mod, *args_metas, **kwargs_metas)
else:
meta_out = mod(*args_metas, **kwargs_metas)
elif kind == "get_attr":
attr_itr = root
atoms = target.split(".")
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
if isinstance(attr_itr, torch.nn.parameter.Parameter):
meta_out = torch.nn.Parameter(attr_itr.to(device="meta"))
elif isinstance(attr_itr, torch.Tensor):
meta_out = attr_itr.to(device="meta")
else:
meta_out = attr_itr
else:
return None
except Exception as e:
raise RuntimeError(f"Could not compute metadata for {kind} target {target}: {e}")
return meta_out
def bias_addition_pass(gm: ColoGraphModule, root_model: torch.nn.Module, meta_args: Optional[Dict[str, Any]] = None):
result_graph = Graph()
value_remap = {}
unwrap_fn = lambda n: n._meta_data if isinstance(n, Node) else n
for orig_node in gm.graph.nodes:
assert hasattr(orig_node, "_meta_data")
kind = orig_node.op
target = orig_node.target
args = orig_node.args
kwargs = orig_node.kwargs
args_metas = tree_map(unwrap_fn, args)
tracer = ColoTracer()
tracer.graph = Graph(tracer_cls=ColoTracer)
tracer.root = root_model
def wrap_fn(n):
if isinstance(n, Node):
proxy = ColoProxy(n, tracer)
proxy.meta_data = n._meta_data
return proxy
return n
args_proxy = tree_map(wrap_fn, args)
kwargs_proxy = tree_map(wrap_fn, kwargs)
handle = None
if kind == "call_function":
if bias_addition_function.has(target):
if target == torch.nn.functional.linear:
if 'bias' in kwargs and kwargs['bias'] is not None:
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target)(tracer, target, args_proxy, kwargs_proxy,
function_to_substitute)
else:
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target)(tracer, target, args_proxy, kwargs_proxy,
function_to_substitute)
elif bias_addition_function.has(target.__name__):
# use name for some builtin op like @ (matmul)
function_to_substitute = func_to_func_dict[target]
handle = bias_addition_function.get(target.__name__)(tracer, target, args_proxy, kwargs_proxy,
function_to_substitute)
elif kind == "call_method":
method = getattr(args_metas[0].__class__, target)
if bias_addition_method.has(method):
function_to_substitute = method_to_func_dict[method]
handle = bias_addition_method.get(method)(tracer, target, args_proxy, kwargs_proxy,
function_to_substitute)
elif kind == "call_module":
# if not hasattr(self, "orig_forward"):
# raise AttributeError(f"{self} does not have an attribute called orig_forward")
mod = gm.get_submodule(target)
mod_type = type(mod)
if bias_addition_module.has(mod_type) and mod.bias is not None:
function_to_substitute = module_to_func_dict[mod_type]
handle = bias_addition_module.get(mod_type)(tracer, target, args_proxy, kwargs_proxy,
function_to_substitute)
if handle is not None:
handle.generate()
for node_inserted in tracer.graph.nodes:
value_remap[node_inserted] = result_graph.node_copy(node_inserted, lambda n: value_remap[n])
last_node = value_remap[node_inserted]
value_remap[orig_node] = last_node
else:
value_remap[orig_node] = result_graph.node_copy(orig_node, lambda n: value_remap[n])
del tracer
gm.graph = result_graph
gm.recompile()
meta_prop_pass(gm, root_model, meta_args)