You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/fx/passes/meta_info_prop.py

359 lines
14 KiB

from dataclasses import asdict
from typing import Any, Dict, List, NamedTuple, Tuple
import torch
import torch.fx
from torch.fx.node import Argument, Node, Target
from torch.utils._pytree import tree_map
from colossalai.fx._compatibility import compatibility, is_compatible_with_meta
from colossalai.fx.profiler import (
GraphInfo,
activation_size,
calculate_fwd_in,
calculate_fwd_out,
calculate_fwd_tmp,
profile_function,
profile_method,
profile_module,
)
@compatibility(is_backward_compatible=True)
class TensorMetadata(NamedTuple):
# TensorMetadata is a structure containing pertinent information
# about a tensor within a PyTorch program.
shape: torch.Size
dtype: torch.dtype
requires_grad: bool
stride: Tuple[int]
numel: int
is_tensor: bool
# TODO: we can add a list of sharding spec here, and record the sharding
# behavior by appending sharding spec into list.
def _extract_tensor_metadata(result: torch.Tensor) -> TensorMetadata:
"""
Extract a TensorMetadata NamedTuple describing `result`.
"""
shape = result.shape
dtype = result.dtype
requires_grad = result.requires_grad
stride = result.stride()
numel = result.numel()
is_tensor = True
return TensorMetadata(shape, dtype, requires_grad, stride, numel, is_tensor)
@compatibility(is_backward_compatible=True)
class MetaInfoProp(torch.fx.Interpreter):
"""
Execute an FX graph Node-by-Node with meta tensor and
record the memory usage, FLOPs, and type of the result
into the corresponding node.
Usage:
BATCH_SIZE = 2
DIM_IN = 4
DIM_HIDDEN = 16
DIM_OUT = 16
model = torch.nn.Sequential(
torch.nn.Linear(DIM_IN, DIM_HIDDEN),
torch.nn.Linear(DIM_HIDDEN, DIM_OUT),
)
input_sample = torch.rand(BATCH_SIZE, DIM_IN)
gm = symbolic_trace(model)
interp = MetaInfoProp(gm)
interp.run(input_sample)
print(interp.summary(format='kb')) # don't panic if some statistics are 0.00 MB
# output of above code is
Op type Op Forward FLOPs Backward FLOPs FWD_OUT FWD_TMP BWD_OUT BWD_TMP
----------- ------- --------------- ---------------- --------- --------- --------- ---------
placeholder input_1 0 FLOPs 0 FLOPs 0.00 KB 0.00 KB 0.00 KB 0.00 KB
call_module _0 128 FLOPs 288 FLOPs 0.12 KB 0.00 KB 0.34 KB 0.00 KB
call_module _1 512 FLOPs 1,056 FLOPs 0.12 KB 0.00 KB 1.19 KB 0.00 KB
output output 0 FLOPs 0 FLOPs 0.00 KB 0.00 KB 0.00 KB 0.00 KB
Args:
module (GraphModule): The module to be executed
"""
_is_proped: bool = False
@compatibility(is_backward_compatible=True)
def run_node(self, n: Node) -> Any:
"""
Run a specific node ``n`` and return the result.
Calls into placeholder, get_attr, call_function,
call_method, call_module, or output depending
on ``node.op``
Args:
n (Node): The Node to execute
Returns:
Any: The result of executing ``n``
"""
self._is_proped = True
result, meta_info = super().run_node(n)
def extract_tensor_meta(obj):
if isinstance(obj, torch.Tensor):
return _extract_tensor_metadata(obj)
else:
return TensorMetadata(None, None, False, None, 0, False)
tensor_meta = tree_map(extract_tensor_meta, result)
n.meta['tensor_meta'] = tensor_meta
n.meta = {**n.meta, **asdict(meta_info)} # extend MetaInfo to `n.meta`
# TODO: the attribute node_size should be removed in the future
setattr(n, 'node_size', activation_size(n.meta.get('fwd_out', 0)) + activation_size(n.meta.get('fwd_tmp', 0)))
setattr(n, 'fwd_flop', n.meta.get('fwd_flop', 0))
setattr(n, 'bwd_flop', n.meta.get('bwd_flop', 0))
n.meta['type'] = type(result)
# retain the autograd graph
for param in self.module.parameters():
param.grad = None
return result
# Main Node running APIs
@compatibility(is_backward_compatible=True)
def placeholder(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``placeholder`` node. Note that this is stateful:
``Interpreter`` maintains an internal iterator over
arguments passed to ``run`` and this method returns
next() on that iterator.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Returns:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return super().placeholder(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def get_attr(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``get_attr`` node. Will retrieve an attribute
value from the ``Module`` hierarchy of ``self.module``.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return super().get_attr(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def call_function(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_function`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
assert not isinstance(target, str)
return profile_function(target)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_method(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_method`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return profile_method(target)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_module(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_module`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
# Retrieve executed args and kwargs values from the environment
# Execute the method and return the result
assert isinstance(target, str)
submod = self.fetch_attr(target)
return profile_module(submod)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def output(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute an ``output`` node. This really just retrieves
the value referenced by the ``output`` node and returns it.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
if hasattr(args[0], '_tensor'):
return args[0], GraphInfo(fwd_in=[args[0]._tensor])
return args[0], GraphInfo(save_fwd_in=True)
def propagate(self, *args):
"""
Run `module` via interpretation and return the result and
record the shape and type of each node.
Args:
*args (Tensor): the sample input.
Returns:
Any: The value returned from executing the Module
"""
return super().run(*args)
def summary(self, unit: str = 'MB') -> str:
"""
Summarizes the memory and FLOPs statistics of the `GraphModule` in
tabular format. Note that this API requires the ``tabulate`` module
to be installed.
"""
# https://github.com/pytorch/pytorch/blob/master/torch/fx/graph.py
try:
from tabulate import tabulate
except ImportError:
print("`summary` relies on the library `tabulate`, "
"which could not be found on this machine. Run `pip "
"install tabulate` to install the library.")
assert self._is_proped, "Please call `interp.run(input)` before calling `interp.summary()`."
# Build up a list of summary information for each node
node_summaries: List[List[Any]] = []
def mem_repr(mem: int) -> str:
unit_divisor_map = {
'kb': 1024,
'mb': 1024**2,
'gb': 1024**3,
'tb': 1024**4,
}
return f"{mem / unit_divisor_map[unit.lower()]:.2f} {unit.upper()}"
def flops_repr(flop: int) -> str:
return f"{flop:,} FLOPs"
accumulate_size = 0
for node in self.module.graph.nodes:
node: Node
accumulate_size += calculate_fwd_out(node) + calculate_fwd_tmp(node)
node_summaries.append([
node.op,
str(node),
flops_repr(node.meta['fwd_flop']),
flops_repr(node.meta['bwd_flop']),
mem_repr(accumulate_size),
mem_repr(calculate_fwd_in(node)),
mem_repr(calculate_fwd_out(node)),
mem_repr(calculate_fwd_tmp(node)),
mem_repr(node.meta['bwd_mem_out']),
mem_repr(node.meta['bwd_mem_tmp']),
])
# Use the ``tabulate`` library to create a well-formatted table
# presenting our summary information
headers: List[str] = [
'Op type',
'Op',
'Forward FLOPs',
'Backward FLOPs',
'Accumulated Memory',
'FWD_IN',
'FWD_OUT',
'FWD_TMP',
'BWD_OUT',
'BWD_TMP',
]
return tabulate(node_summaries, headers=headers, stralign='right')
def metainfo_trace(gm: torch.fx.GraphModule, *args, verbose: bool = False, unit: str = "MB", **kwargs) -> None:
"""
MetaInfo tracing API
Given a ``GraphModule`` and a sample input, this API will trace the MetaInfo of a single training cycle,
and annotate them on ``gm.graph``.
Uses:
>>> model = ...
>>> gm = symbolic_trace(model)
>>> args = ... # sample input to the ``GraphModule``
>>> metainfo_trace(gm, *args)
Args:
gm (torch.fx.GraphModule): The ``GraphModule`` to be annotated with MetaInfo.
verbose (bool, optional): Whether to show ``MetaInfoProp.summary()`. Defaults to False.
unit (str, optional): The unit of memory. Defaults to "MB".
Returns:
torch.fx.GraphModule: The ``GraphModule`` annotated with MetaInfo.
"""
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
interp = MetaInfoProp(gm.to(device))
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
args = tree_map(lambda x: MetaTensor(x, fake_device=device), args)
kwargs = tree_map(lambda x: MetaTensor(x, fake_device=device), kwargs)
interp.propagate(*args, **kwargs)
if verbose:
interp.summary(unit)
gm.to('cpu')
del interp
return gm