Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

205 lines
6.1 KiB

import os
import sys
from datetime import datetime
from typing import List
from setuptools import find_packages, setup
from op_builder.utils import (
check_cuda_availability,
check_pytorch_version,
check_system_pytorch_cuda_match,
get_cuda_bare_metal_version,
get_pytorch_version,
set_cuda_arch_list,
)
try:
from torch.utils.cpp_extension import CUDA_HOME, BuildExtension
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
CUDA_HOME = None
# Some constants for installation checks
MIN_PYTORCH_VERSION_MAJOR = 1
MIN_PYTORCH_VERSION_MINOR = 10
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
BUILD_CUDA_EXT = int(os.environ.get("CUDA_EXT", "0")) == 1
IS_NIGHTLY = int(os.environ.get("NIGHTLY", "0")) == 1
# a variable to store the op builder
ext_modules = []
# we do not support windows currently
if sys.platform == "win32":
raise RuntimeError("Windows is not supported yet. Please try again within the Windows Subsystem for Linux (WSL).")
# check for CUDA extension dependencies
def environment_check_for_cuda_extension_build():
if not TORCH_AVAILABLE:
raise ModuleNotFoundError(
"[extension] PyTorch is not found while CUDA_EXT=1. You need to install PyTorch first in order to build CUDA extensions"
)
if not CUDA_HOME:
raise RuntimeError(
"[extension] CUDA_HOME is not found while CUDA_EXT=1. You need to export CUDA_HOME environment variable or install CUDA Toolkit first in order to build CUDA extensions"
)
check_system_pytorch_cuda_match(CUDA_HOME)
check_pytorch_version(MIN_PYTORCH_VERSION_MAJOR, MIN_PYTORCH_VERSION_MINOR)
check_cuda_availability()
def fetch_requirements(path) -> List[str]:
"""
This function reads the requirements file.
Args:
path (str): the path to the requirements file.
Returns:
The lines in the requirements file.
"""
with open(path, "r") as fd:
return [r.strip() for r in fd.readlines()]
def fetch_readme() -> str:
"""
This function reads the README.md file in the current directory.
Returns:
The lines in the README file.
"""
with open("README.md", encoding="utf-8") as f:
return f.read()
def get_version() -> str:
"""
This function reads the version.txt and generates the colossalai/version.py file.
Returns:
The library version stored in version.txt.
"""
setup_file_path = os.path.abspath(__file__)
project_path = os.path.dirname(setup_file_path)
version_txt_path = os.path.join(project_path, "version.txt")
version_py_path = os.path.join(project_path, "colossalai/version.py")
with open(version_txt_path) as f:
version = f.read().strip()
# write version into version.py
with open(version_py_path, "w") as f:
f.write(f"__version__ = '{version}'\n")
# look for pytorch and cuda version
if BUILD_CUDA_EXT:
torch_major, torch_minor, _ = get_pytorch_version()
torch_version = f"{torch_major}.{torch_minor}"
cuda_version = ".".join(get_cuda_bare_metal_version(CUDA_HOME))
else:
torch_version = None
cuda_version = None
# write the version into the python file
if torch_version:
f.write(f'torch = "{torch_version}"\n')
else:
f.write("torch = None\n")
if cuda_version:
f.write(f'cuda = "{cuda_version}"\n')
else:
f.write("cuda = None\n")
return version
if BUILD_CUDA_EXT:
environment_check_for_cuda_extension_build()
set_cuda_arch_list(CUDA_HOME)
from op_builder import ALL_OPS
op_names = []
# load all builders
for name, builder_cls in ALL_OPS.items():
op_names.append(name)
ext_modules.append(builder_cls().builder())
# show log
op_name_list = ", ".join(op_names)
print(f"[extension] loaded builders for {op_name_list}")
# always put not nightly branch as the if branch
# otherwise github will treat colossalai-nightly as the project name
# and it will mess up with the dependency graph insights
if not IS_NIGHTLY:
version = get_version()
package_name = "colossalai"
else:
# use date as the nightly version
version = datetime.today().strftime("%Y.%m.%d")
package_name = "colossalai-nightly"
setup(
name=package_name,
version=version,
packages=find_packages(
exclude=(
"op_builder",
"benchmark",
"docker",
"tests",
"docs",
"examples",
"tests",
"scripts",
"requirements",
"*.egg-info",
)
),
description="An integrated large-scale model training system with efficient parallelization techniques",
long_description=fetch_readme(),
long_description_content_type="text/markdown",
license="Apache Software License 2.0",
url="https://www.colossalai.org",
project_urls={
"Forum": "https://github.com/hpcaitech/ColossalAI/discussions",
"Bug Tracker": "https://github.com/hpcaitech/ColossalAI/issues",
"Examples": "https://github.com/hpcaitech/ColossalAI-Examples",
"Documentation": "http://colossalai.readthedocs.io",
"Github": "https://github.com/hpcaitech/ColossalAI",
},
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension} if ext_modules else {},
install_requires=fetch_requirements("requirements/requirements.txt"),
entry_points="""
[console_scripts]
colossalai=colossalai.cli:cli
""",
python_requires=">=3.6",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: Apache Software License",
"Environment :: GPU :: NVIDIA CUDA",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: System :: Distributed Computing",
],
package_data={
"colossalai": [
"_C/*.pyi",
"kernel/cuda_native/csrc/*",
"kernel/cuda_native/csrc/kernel/*",
"kernel/cuda_native/csrc/kernels/include/*",
]
},
)