mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
3.5 KiB
90 lines
3.5 KiB
"""Adapted from https://github.com/NUS-HPC-AI-Lab/LARS-ImageNet-PyTorch/blob/main/lars.py""" |
|
|
|
from typing import Iterable |
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
|
|
|
|
class Lars(Optimizer): |
|
r"""Implements the LARS optimizer from `"Large batch training of convolutional networks" |
|
<https://arxiv.org/pdf/1708.03888.pdf>`_. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
momentum (float, optional): momentum factor (default: 0) |
|
eeta (float, optional): LARS coefficient as used in the paper (default: 1e-3) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
""" |
|
|
|
def __init__( |
|
self, params: Iterable[torch.nn.Parameter], lr=1e-3, momentum=0, eeta=1e-3, weight_decay=0, epsilon=0.0 |
|
) -> None: |
|
if not isinstance(lr, float) or lr < 0.0: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if momentum < 0.0: |
|
raise ValueError("Invalid momentum value: {}".format(momentum)) |
|
if weight_decay < 0.0: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
if eeta <= 0 or eeta > 1: |
|
raise ValueError("Invalid eeta value: {}".format(eeta)) |
|
if epsilon < 0: |
|
raise ValueError("Invalid epsilon value: {}".format(epsilon)) |
|
defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay, eeta=eeta, epsilon=epsilon, lars=True) |
|
|
|
super().__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
weight_decay = group["weight_decay"] |
|
momentum = group["momentum"] |
|
eeta = group["eeta"] |
|
lr = group["lr"] |
|
lars = group["lars"] |
|
eps = group["epsilon"] |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
decayed_grad = p.grad |
|
scaled_lr = lr |
|
if lars: |
|
w_norm = torch.norm(p) |
|
g_norm = torch.norm(p.grad) |
|
trust_ratio = torch.where( |
|
w_norm > 0 and g_norm > 0, |
|
eeta * w_norm / (g_norm + weight_decay * w_norm + eps), |
|
torch.ones_like(w_norm), |
|
) |
|
trust_ratio.clamp_(0.0, 50) |
|
scaled_lr *= trust_ratio.item() |
|
if weight_decay != 0: |
|
decayed_grad = decayed_grad.add(p, alpha=weight_decay) |
|
decayed_grad = torch.clamp(decayed_grad, -10.0, 10.0) |
|
|
|
if momentum != 0: |
|
param_state = self.state[p] |
|
if "momentum_buffer" not in param_state: |
|
buf = param_state["momentum_buffer"] = torch.clone(decayed_grad).detach() |
|
else: |
|
buf = param_state["momentum_buffer"] |
|
buf.mul_(momentum).add_(decayed_grad) |
|
decayed_grad = buf |
|
|
|
p.add_(decayed_grad, alpha=-scaled_lr) |
|
|
|
return loss
|
|
|